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ABSTRACT

These pages present a study of gaseous diffusion into and
turbulent entrainment from steady as well as nonsteady fully
f cavitating flows and characterize the nonsteady cavity as a dynarfic ~
| element in a water tunnel test section. An approximate theoretical
analysis is done for gaseous diffusion across steady axisymmeﬁric‘

n cavities. A comparison with experimental results reveals that the

i present approximate analysis is suited for hetter estimates of

1i gaseous diffusion across the gas-liquid interface of axjisymmetric
cavities than past analyses.

Water-tunnel experiments for two-dimensional flows were
conducted on cavities behind a stationary and oscillating "flat
plate” {wedge) hydrofoil. It is found that the steady cavity
pressures were significantly higher than the vapor pressure of ﬁater
and larger cavities tend to maintain higher cavity pressures.
Unsteady cavity pressures were foﬁnd to be significant only at low
frequencies of profile oscillation. Downstream and upstream of the

-cavity, the oscillating cavity was observed to behave like a dipole

i source at low frequencies of oscillation and like a quadrupole
source at high frequencies of foil oscillation. An analysis of the
j oscillating cavity lengths revealed that for sinuscidal motions of

the foil, the first two harmonics of the cavity mctions are

significant.

A mathematical model 1s then developed to estimate the
nonsteady gaseous entrainment behind two-dimensional steady and

oscillating cavities. This model takes into account the varying gas




T——m

iv
pressure as well as varying cavity lengths. It is observed that
this model has the proper steady state limit. Steady and nonsteady
gas entrainment rates were estimated for the two-dimensional
cavity. It 1s found that gas pressure within the cavity affects
the steady entrainment behind the cavity. The phase angle between
the foil motion and cavity motion is determined by a physically
driven argument that is seen to be consistent with experimental
observations. The nonsteady gaseous entrainment behind the cavity

is seen to depend only on the cavity volume fluctuations and cavity

gas pressure fluctuations.
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CHAPTER !}

INTRODUCTION

l.1 Preliminary

In many liquid flow systems, some form of unsteady cavity flow
exists at one or more locations in the circuit. Such unsteady cavity
flow may arise intentionally as in the case of water tunnel
experiments on nonsteady cavity flows or unintentionally as in the
case of high speed, high performance turbomachines in various liquid
flow systems such as nuclear reactors and liquid rocket engines. In
any case, the presence of an unsteady cavity within a liquid might
create disturbances that could tend to make the system unstable. The
propagation of such disturbances becomes even more significant when
small gas bubbles are present in the liquid, wherein the acoustic
celerity of the gas-liquid mixture is greatly reduced. A classic
example is the "POGO™ instability observed in liquid rocket engines
(1,2). 1In closed circuit water tunnel operation involving unsteady
cavity flow experimentation, mass oscillations of the entire circuit

and "breathing of the tunnel” have been reported (3-5). In order to

obtain valid nonsteady force measurements involving cavity flow in
closed circuit water tunnels, the nature of the unsteady cavity as a
disturbance source and the dynamics of the water tunnel itself must be
clearly understood.

It 1s the purpose of this thesis to examine the physical aspects
(such as gaseous diffusion into the cavity and its turbulent

entrainment into the cavity wake) that govern the nature of unsteady

r -
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2
cavities so that system responses to unsteady cavity flows may be more
accurately predicted and related to force measurements on oscillating
struts and foils. This latter aspect, involving the dynamics of any

particular facility, is outside the scope of this study, however.

1.2 Cavity Aspects

Whenever the local pressure in a region within the liquid falls
below the vapor pressure of the liquid at the ambient temperature, the
liquid evaporates and a cavity i{s formed. The size and shape of the
cavity is governed by the cavity pressure and the shape and attitude
of the body on which the cavity is formed. The cavity is usually

characterized by a quantity known as the "cavitation number” which is

defined as:

g -——2 » (l'l)

where

Q
L}

cavitation number,

Pw = free stream static pressure,

Pe = cavity pressure,

Pw = free stream density of the liquid,

Uy = free stream velocity.

In a purely vaporous cavity, the cavity pressure is equal to the
vapor pressure of the liquid at the ambient temperature of the liquid.
Gadd and Grant (6), among others, have demonstrated that the measured
cavity pressure, P.» within fully developed natural cavities exceeds

the liquid vapor pressure, P, because of the unavoidable presence of

)
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3
gases dissolved in the liquid. These gases diffuse through the cavity

interface and set up a partial pressure of gas pc, in the cavity so

that

pc = pv + PG N (1.2)

Thus, the presence of dissolved gases in the liquid affect the
cavitation number ¢ and the behavior of the cavity itself to a
great extent.

The influence of dissolved gases on the behavior of single
bubble cavities, viz., growth and collapse, has been the subject
of many previous investigations. Epstein and Plesset (7) studied
the stability of gas bubbles in liquid gas solutions. Parkin and
Kermeen (8) studied steady gaseous molecular diffusion into a
microbubble. They investigated the influence of gaseous diffusion
on the growth of small bubbles in a flow field containing
dissolved gases. In cavity flows, when the boundary layer on the
cavity surface i{s turbulent, Brennen (9) has shown that turbuleﬁt
gaseous diffusion into the cavity may be more significant than
molecular diffusion. Brennen (9) also extended his two-dimensional
theory to include the gaseous diffusion across an axisymmetric
cavity by wrapping the two-dimensional solution around the cavity.

Several experimental investigations have been devoted to the
understanding of gaseous diffusion across ste#dy cavities (10-13).
A majority of these studies are devoted to the understanding of
axisfmme:ric cavities because of frequent occurrence of such shaves

in marine applications. Swanson and 0'Neill (10) investigated the

stability aspects of ventilated cavities behind circular discs in

At




4
steady flow. Cox and Clayden (11) studied the air entrainment behind
cavities. Billet and Weir (13) measured the entrainment rates
behind ventilated axisymmetric cavities.

The unsteadiness of a cavity arise in two distinct forms. The
first one is the auto oscillation of steady cavities (particularly the
ventilated cavities) that is prevalent at certain cavitation numbers.
This phenomenon has been studied in great detail by Song (14) and
Silberman and Song (15). The second form is the forced oscillation of
the cavity due to the oscillation of the body on which the cavity 1is
formed. ’ /pical examples are a cavity behind an oscillating hydrofoil
and a cavity on a propeller blade. The oscillations of the cavity may
be classified into two distinct forms of motion (16): First, the
motion of the cavity wherein the volume of the cavity changes
significantly; second, the motion of the cavity wherein the shape of
the cavity changes significantly but the cavity volume remains
essentially constant. As the cavity volume changes, the partial
pressure of gas inside the cavity changes. Since the time scale of the
process of vapor release and absorption is very much smaller than the
period of cavity oscillations typically encountered, the vapor pressure
inside the cavity essentially remains constant. Thus the cavity

pressure within an oscillating cavity may be written as

p.(t) =p, +p.(t) , (1.3)

where pc(t) is the cavity gas pressure. Then the cavitation number

o(t) of an oscillating cavity is given by




pc(t)
o(t) = 09 = ———3 (1.4)
1/2p U

™
where ob is the cavitation number based on the vapor pressure of the
liquid. Jiang and Leehey (17) have measured the cavity pressure
within an oscillating cavity behind an elliptical wing oscillating

in pitch. They found that the unsteady cavity pressure depends on

the frequency of oscillation and that the unsteady pressures are
significant at low frequencies of oscillation.

One of the earliest models used in characterizing the unsteady
cavity as a source of disturbances in fluid flow system was in
connection with the analysis of "P0OGO"™ instability in liquid rocket
engines. By defining a quantity called "cavitation compliance”™ which
relates the mass flow fluctuations and the corresponding pressure
fluctuations, Rubin (2) was able to model the oscillating cavitating
bubble as a simple spring mass system. Brennen and Acosta (18) showed
that Rubin's model for a cavitating pump inducer is rather simple.

The results of their experimental investigation revealed appreciable
departure from Rubin's quasi-steady model due to dynamic effects at
high frequency. Huse (16), in an attempt to predict cavitation damage
on the hull of a ship due to a cavitating propeller, represented the
unsteady cavity at the tip of the propeller as a combination of

acoustic monopole and dipole sources. His analytical results compared

wvell with the experiments.




1.3 Scope of Present Investigation

The gas pressure within the cavity is a quantity of fundamental
imwportance in steady and nonsteady cavity flows. The gas pressure
within the cavity dictates the amount of gas diffusion across the
cavity surface. Hence we seek to describe the diffusion phenomeon
analytically and to compare the results with the best available
experimental data. To our knowledge, the data of Billet and Weir
(13) are the best available and they pertain to axisymmetric flows,

In Chapter 2 we first demonstrate using a heuristic model, the
lack of correlation between existing machematical models for gaseous
diffusion across axisymmetric cavities and corresponding experimental
results. Then, we use the convective diffusion theory proposed by
Parkin (8) with the molecular diffusivity being replaced by a turbulent
diffusivity to predict the gaseous diffusion across an axisymmetric
cavity surface. We then show that two-dimensional gaseous diffusion
models cannot always be used to predict gaseous diffusion across
axisymmetric cavities. This naturally led us to the formulation of
convective diffusion of gases for axisymmetric cavity shapes. We
solve the steady diffusion equation in cylindrical coordinates as it
applies to the gaseous diffusion across an axisymmetric cavity surface.
Although the general solution of the governing differential equation
is fairly straightforward, the peculiar set of boundary conditions
for the present idealized representation of the flow and cavity of
interest here makes the problem challenging.

The solution of the problem is built up by superposition starting

from the known point source solution in a moving fluid. First, we use




the point source solution to derive the solution to the governing
differential equation for a "unit ring source.”™ Second, we integrate
the ring source of unknown strength over the length of the doubly
infinite circular cylinder in the streamwise direction. The
application of boundary conditions on this cylindrical cavity surface
results in a system of integral equations which must be solved in order
to determine the source strength., From this solution, the mass flow
rate of gases diffusing across the cavity may be obtained.

As pointed out by Greitzer (20), there is a general lack of
theoretical and experimental results available in the literature that
characterize the unsteady cavity as an active dynamic element.
Therefore, an effort was made to understand the behavior of unsteady
cavities experimentally in this study. We conducted experiments on a
cavitating wedge foil oscillating in pitch. Specifically, we were
interested in measuring the cavity lengths and cavity pressures (steady
and nonsteady) as a function of oscillation frequency and
characterizing the source-like nature of oscillating cavities. We
found that an oscillating cavity has the behavior of a dipole source
and that the unsteady cavity pressures are significant at low
frequencies of oscillation. We also found that the motion of the
cavity is far from being sinusoidal even though the motion of the foil
was sinusoidal. In particular, the first harmonic overtone was found
to be significant. In Chapter 3 the details of this experimental

investigation are presented and the results are discussed.
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The experimental results presented in Chapter 3 as well as those
of Jiang and Leehey (17) have indicated clearly the effect of non-
condensable gas on the behavior of an unsteady cavity. While several
investigations in the past have addressed the effect of steady gaseous
diffusion into the cavity, there is very little literature, if any,
that deals with the analysis of unsteady diffusion across cavity
surfaces. 1In Chapter 4, we formulate and solve the two-dimensional
unsteady diffusion problem. The problem, as formulated, accounts
for both the cavity pressure fluctuations and cavity length
fluctuations. The solution of the unsteady diffusion equation is
obtained by the separation of variables. The expression for mass
diffusion rate is obtained in a manner similar to the method outlined
by Parkin (8) for steady two-dimensional flow. The result for
unsteady mass diffusion rate across a two-dimensional cavity surface
matches the steady state solution predicted by Parkin (8) in the
limit when the frequency of éavi:y oscillation vanishes.

In Chapter 5, we consider the two dizensional steady cavity
closure as well as nonsteady cavity closure condition when the cavity
is not purely vaporous. The steady closure condition is seen to be
rather straightforward to formulate and analyze. 1In analyzing the
nonsteady gaseous cavity closure, we find that it is important to
consider the phase differences that exist between the body motion and
1) cavity volume (or almost equivalently the cavity length)
fluctuation, i{i) the unsteady gaseous diffusion through the entire
cavic& surface, and 1{1) gas pressure fluctuation within the cavity
respectively. In the absence of any available theoretical or

experimental data on the phase lag between the body motion and cavity
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length motion, we appeal to a physically driven argument that cavity
surface waves originating from the upper surface and lower surface of a
foll must terminate at the same point at the same instant. This
results in the phase lag being numerically equal to the modified
reduced frequency of foil oscillation. The nonsteady gaseous cavity
closure is then formulated using the nonsteady continuity equatiom.
With the help of the experimental data reported above, continuity
enables the determination of magnitude and phase of the nonsteady
entrained gas behind the cavity in terms of the reduced frequency of
oscillation k', the nonsteady mass diffusion through the cavity
surface, the cavity pressure fluctuations and the cavity volume
fluctuations.

The reader will find that an analytical approach has been used
throughout the present study. The reason for this being, analytical

solutions render better physical insight than numerical solutions.
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CHAPTER 2
GASEOUS DIFFUSION STUDIES ACROSS AN AXISYMMETRIC

PERMEABLE CAVITY SURFACE

2.1 Introduction

A thorough analysis of the gaseous diffusion process across a
cavity surface is fundamental to the understanding of both natural and
ventilated cavity flows because diffusion into or out of the liquid
can influence the cavity pressure to a great extent. Analysis of
gaseous diffusion across axisymmetric cavity surfaces is of particular
interest because of the frequent occurrence of such cavity flows in
marine applicatioms.

Steady diffusion of gases across a two-dimensional cavity has
been studied by Parkin (8). Parkin used this planar solution to
approximate the rate of molecular diffusfon into a microbubble.
Brennen (9) considered turbulent gaseous diffusion into a large
two-dimensional cavity by using a model which assumes that the
turbulence is associated with the turbulent shear layer on the cavity
surface. Billet and Weir (13) have attempted to use Brennen's model
to predict the rate of diffusion across axisymmetric cavity surfaces.
They found when Brennen's two-dimensional solution is extended to the
axisymmetric case by wrapping the two-dimensional solution around the
cavity, that the observed diffusion rate exceeds the analytical
prediction by nearly one order of magnitude. They circumvented this

discrepancy by using their experimental data to choose a constant

multiplicative factor in Brennen's model.
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. Brennen's solution assumes that the diffusion occurs through the
' turbulent eddies within the turbulent boundary layer on the cavity '

surface. Hence Brennen's solution is applicable only where the

" ,
% boundary layer has had a chance to grow on the surface of the body i
i' before a cavity is formed, as for example, behind the trailing edge

r of a hydrofoil. But in cases where the cavity emerges from the

§ leading edge of a hydrofoil at small angle of attack or the cavity is

ﬁ on a zero caliber ogive as in the experiments of Rillet and Weir,

. the boundary layer on the cavity near the leading edge is laminar

)' and very thin; and since the cavity surface is then a laminar free

% shear layer, the rate of growth of this part of the boundary layer

5 is small. For such flows it appears as though a different approach A
5 has to be followed in modeling the turbulent diffusion phenomenon. |
3

:{ In many cases, this laminar shear layer is of short axial extent

f and the shear layer is turbulent thereafter. :
;’ In this chapter, an attempt is made to clear some of the |
3$ discrepancies observed by Billet and Weir (13) in their effort to

' compare their measurements with Brennen's theory. A convective slug i
& flow model is first used to estimate the maximum possible mass '
i convective diffusion rate of gas through the turbulent boundary

; layer on the axisymmetric cavity surface. These estimates are then

Eﬁ compared with the experimental results of Billet and Weir (13) and

; Brennen's theory. Then, a turbulent diffusivify (that is i
ﬁ’ representative of free shear flows) 1s used instead of molecular

i; diffusivity as in Parkin's model, to compare with the experimental

h results. A mathematical model is then formulated for gaseous

} diffusion across an axisymmetric cavity surface.

:
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2.2 Convective Slug Flow Model for Mass Diffusion Rate Estimation

Brennen's theory assumes that all of the diffusion occurs from
turbulent eddies that are within the boundary layer. For cavity
flows wherein the cavity emerges from the leading edge, the boundary
layer on the cavity surface is very thin and Brennen's theory may
not quite be applicable. In order to demonstrate whether or not
Brennen's theory is applicable in such situations and to assist
speculations about other possible mechanisms for gaseous diffusion
in cavity flows, the following conservative estimates are carried
out using a slug flow model.

We assume that the quantity of dissolved gases available for
diffusion is contained within a volume of liquid determined by the
maximum thickness of the turbulent boundary layer and the length of
the cavity as shown in Figure 2.1. We also assume that all gas in
this volume diffuses into the cavity instantaneously and then the
slug of volume in the shape of a hollow cylinder of mean radius
"a,” length "L” and thickness "§," equal to the maxicum shear layer
thickness at the cavity terminus, is swept downstream and a fresh
supply of gases becomes available every L/U_ seconds.

If we denote by ¢, the concentration difference across the
cavity surface, the maximum possible diffusion rate is estimated

as

M = (27aL§)c(U_/L)

or

M = 2nal 6c . (2.1)
(-]
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Figure 2.1. Slug Flow Model for Estimating the Gaseous
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The mass diffusion rates predicted by the slug~flow model are shown
in Table 2.1 for cavities behind zero caliber ogive models. Also
shown in the table are the experimental values of mass diffusion
rates from Billet and Weir (13) and the mass diffusion rates predicted
by Brennen's theory (9). A comparison of the diffusion rates
predicted by the slug-flow model and the experiments shows that even
by conservative estimates, the maximum gas diffusion possible through
the turbulent boundary layer is nearly one order of magnitude less

than the experimentally observed values.

2.3 Modified Parkin Model

Following the analysis in Ref. (8), the mass diffusion rate
across a two-dimensional cavity surface, with the molecular

diffusivity « being replaced by a turbulent diffusivity v¢ is given

by
: 5T T
M)ZD = —/:—-' [/Zkl -3 ] R (2.2)
L f
where

Xe
(]

mass flow rate per unit cavity width

p = density of water

ve = turbulent diffusivity
¢ = concentration difference
A = U,a/th

2 = length of two-dimensional cavity.

gy
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Wrapping the two-dimensional solution around an axisymmetric cavity
of radius “a,” one can write the mass flow rate across an axisymmetric

cavity as

M = 8pvec 77 a [/2xL - -Z-'IE] .

(2.3)

For a zero caliber ogive, the non-dimensional cavity length 2 and

cavity radius is related to the cavitation number o by the relations®

L = 0.955 , (2.4a)
[+4
and
0.715
:6-—340 . (2.4b)

In Eq. (2.4b), D represents the diameter of the axisyummetric ogive

body. With Eqs. (2.4) substituted fn Eq. (2.3),

0.34

M = 10.14pcDvea [1.382x1/2a'1/2 - 0.886] . (2.5)

We now devise a turbulent diffusivity parameter v, characteristic

of a free shear layer as

v~ 2 V2 (2.6)

V v2 = r.,m.S. turbulence level

lm = mixing length.

where

*(See, for example, Billet, M. L., J. W. Holl and D. S. Weir,
"Geometric Description of Developed Cavities on Zero and
Quarter Caliber Ogive Bodies,” ARL/PSU TM 74-136 [1974].)
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For a planar mixing layer®

%n ~ 0.076 ’ (2.7a)

Vo2 ~o.000, , (2.7b)

where § is the layer thickness. Therefore we will take

\’t = 0.0063 GUQY . (2-7C)

In the following comparison, the constant of proportionality y is
taken to be unity. Figures 2.2 and 2.3 show the variation of
volume flow rates predicted by Eq. (2.5) and the corresponding
experimental values of Billet and Weir (13). It is observed that
the theoretical and experimental values compare well; at least they
are of the same order of magnitude! This good agreement is to be
expected if it is recognized that near the leading edge (where the
concentration gradients are very high) the boundary layer thickness
is very small and thus extension of a two-dimensional result to
axisymmetric cases appears to give a good approximation even though
the concentration layer is comparable to the cavity radius at the

tail end of the cavity (see Figure 2.4 below).

*See, for example, Launder, B. E. and D. B. Spalding, Mathematical
Models for Turbulence, Academic Press [1972]).
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2.4 Mathematical Analysis

The discrepancy that exists between the experimental results
and existing mathematical models for gaseous diffusion across
axisymmetric cavities prompted us to look at the validity of
extending existing two-dimensional diffusion models to axisymmetric
diffusion studies., While it is true that two-dimensional solutions
can be extended to include axisymmetric cases, such extensions hold
good only when the concentration boundary layer thickness on the
cavity is small compared to the radius of cavity. This is a rather
serious restriction for flows normally encountered where the
concentration layer thickness 1s not necessarily small, relative to
the radius of the cavity. Just to exemplify this point, the
concentration layer profile at the end of the cavity has been plotted
in Figure 2.4, the flow conditions being representative of experi-
ments reported in Ref. (13). It is clear that the concentration
layer thickness {is comparablebco the radius of cavity. Thus, a
more accurate mathematical representation for gaseous diffusion
across an axisymmetric cavity surface is clearly warranted.

Gaseous diffusion will occur when there is a dissolved gas
concentration gradient between the free stream and the liquid on the
cavity surface. If 3 is the measured dissolved gas content in
parts per million (ppm) by moles, then by Henry's law, the saturation

partial pressure of the gas in the free stream is given by

PFS = 018 (2.8)
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where 8 is the Henry's law constant which depends on temperature. If
P is the partial pressure of non-condensable gas in the cavity,

then the mean concentration difference expressed in ppm by moles is

cC = al - 'B—' . (2.9)

Consider an axisymmetric flow of water containing dissolved gases
which has the concentration C(X,R) at any point in the region R > a,
where "a" is the radius of the axisymmetric cavity. The undisturbed
flow is taken to have a constant velocity U_ in the positive
X~direction. In the interest of simplicity, all momentum boundary
layer perturbation velocities u and v in the X and R directions
respectively are neglected. The free stream velocity applies to

the entire flow field. The mass diffusion of gases through the
permeable axisymmetric cavity surface occurs between X = 0 and X = L
as shown in Figure 2.5. The remaining portion of the X-axis is
supposed to be impermeable to gas diffusion. On the permeable
surface, let the concentration have the constant value Co and the
concentration of dissolved gases at points far from the permeable

surface have the value Ca. Then, the concentration difference c(X,R)

is defined as

¢(X,R) = C(X,R) = C_ . (2.10)

3*
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Let «k be the mass diffusivity parameter. We do not identify the
nature of the mass diffusivity parameter as either wmolecular or
turbulent. In either case, the governing differential equation for
the concentration difference has the form [see, for example,

Carslaw and Jaeger (22)]

LI S (2.11)

where V2 is the Laplacian operator. By non—dimensionalizing the
linear distances along X, Y, Z and R by the radius of the cavity
such that x = Xfa, y = Y/a, z = Z/a and r = R/a, we can write

Eq. (2.11) as

(2.12)

In order to determine the solution of Eq. (2.12) subject to the
prescribed boundary conditions, we first write the solution of
Eq. (2.12) when a source of strength "q" is located at the origin

in a moving fluid (22), as

1
q e-k(r - x)

c(x z) =
¥ 4rkr'a

> (2.13)
where

q = mass flux of gas

k = mass conductivity = «p

r' = x2 + y2 + z2 , the distance betweeh the

field point and the origin

b
[ ]

mass diffusivity

p = density of the liquid

>
]

Ua/2x , a dimensionless parameter.

Y 0
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If the source is located at (£,n,z) instead of at the origin, :(
™)

the solution of Eq. (2.12) will be modified as follows: [
O

oy

-’ - x oty

c(x,y,2;&,n,8) = —il-—l— e ( ) ’ (2.14) |::'

4rkr a N

where r'' = W/tx - 5)2 + (y - n)z + (z - c)z, is the distance between
the source point (£&,n,z) and the field point (x,y,2).

We now consider a "ring source"” of unit radius and unit strength
located at x = g, The plane of the ring is perpendicular to the

x-axis and the x-axis passes through the center of the ring. Consider

P

an element of the ring d6, as shown in Figure 2.6. Then the strength
; of this element will be d6/27 and from Eq. (2.14), the concentration
at a point (x,r) due to the flux of concentration at (£,1,8) will be

do _a(r’ - (x - 8)

: (2.15)
8 kr a

GC(X,I'; E:lse) =

Integrating the right-hand side of the above equation between the
limits of 0 and 2w, we obtain the concentration at a field point

(x,r) due to a unit ring source at x = £ as

eA(x - E) 2n e-Ar"
c(x,r;8) = 5 / ——do , (2.16)
. 81°ka 0

where the distance r'' is now given by

r'' o= V(x - E)2 + r2 +1-2r cos 8 . (2.17)

| The integral in Eq. (2.16) has been evaluated in Appendix A.l for

large values of A (of the order 2000) by using Laplace's method and

the result for the concentration is

-
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AxE) Vix -2 + ¢ - 12
8‘"3/2‘)33/2 1/4 *

c(x,r;g) = (2.18)

——— 2 2
/xrU_ [x = 8)° + (r = D7]
Equation (2.18) has the desired properties relevant to the physical
problem, viz.;, ¢c +0as x + ~wand c+ 0asr +

Now suppose that the mass flux per unit length between x = - o

and x = + » 1s given by the function f(x). Then the function c(x,r)

can be expressed in terms of this source strength per unit length as

- 1/(x - 5)2 + (r - 1)2
5174 ldg ,  (2.19)
]

clx,r) =& [ £(ge x8) [ 5
r -= [(x -&)" +(r - 1)

where

1

A= .
81r3/2pa3/ ZIE

(2.20)

In the integral in Eq. (2.19), the limit ~ ®» to + = appears instead
of 0 to £ because the unit ring source solution does not satisfy the
boundary condition at r = 1: dc/dr:'lx#E = 0. If we now require that
c(x,1) = ¢y = Co - C_, in the interval 0 < x < £, and dc/drlr=1 =0

in the intervals - « { x < 0 and ¢ ¢ x € », the source strength f£(x)

is determined by the three integral equations of the form

x =2x(g - xz)

g 9 £,08) 2 £,08) tof, (e
K—-=f——-——d§+f———d§+f dg

- /xz - £ 0 sz - £ x, YE - X,

=2x(g - xz)
= £,(8)e
+ [ dg , (2.21)
L 7§ = x
2
R T T i i A LR L e L o e S e Co L ol T P e v,

r_Jx]
]

B 22 g

P X A

-
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x =2x(g - xl) =2x(g - xl)
L o£.(8) 0 £,(8e £ (5
0= ——dg + | — dg + | de
-n/xl-g X /E-xl 0 'E-xl
1
~2A(g - xl)
® f3(E)e
+ [ e, (2.22)
[ /E - Xl
and
0 £, Log,08) BRI N (S
0=/ dg + [ ———dg + [ ———d¢
—o /x3 - £ 0 /x3 - £ l /x3 -t
-2x(g - x3)
*® f3(E)e
+ g , (2.23)

where the positive branch of the square root has been taken. The
functions fl, f2 and f3 are the source strength distributions in the
intervals - = ¢ X, <0, 0« X, < 2 and £ < X3 < = respectively. These
three source functions are taken to be zero outside their specified
intervals.

The three integral equations (2.21) to (2.23) are coupled and
rather difficult to solve in their present form. In order to make
the solution tractable, we simplify some of the integrals appearing
in the three equations (see Appendix A.2) recbgnizing the fact that

the nondimensional number A is fairly large. Thus, the simplified

integral equations are
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: ¢, ‘} £,08) IZ £,(6) . 2210 :
—_— —dE + ——dE + —f (x,) , 2.21a :
A - 'Ixz - 0 m 2X "2772 .
t ‘
), !
.':' fl fl(E) " t
4 —_——dE + — f (x,) =0 , (2.22a) :
K e 22 1771
¢ - xl - E :
)
Kt x
0 £.(o) £,(£) 3 £.00) 5
& 1 2 3 ;
Y dg + [ dg + [ dg + £.(x.) =0 . )
‘ —= 7¥3 0 7*3 L X3
LN ]
:! (20233) K
a;( $
;& (]
“,: The integral equation (2.22a) has been solved using Picard's method* ¥
5"! x‘
‘ in Appendix A3 and the result for f1 is -
g 3
:3', 2Axl :*
s fl(xl) =cpe x, <0, (2.24) :A
c?“ '
3 and c1 is an arbitrary constant. The function fl(xl) may now be
), A
W substituted in the integral equation (2.21a) and the function X
<4 .
:;: fz(xz) obtained by the Laplace transform method (see Appendix A.4) v
' as ¢
W0
u ]
:.‘ ‘i
y S 22 Dxy, G !
[} = — Pl - g
" £,(x,) = (3 7= +c))e  Cerfe/2ix, , (2.25) ]
/2A1rx2
5 ]
f:' where the parameter ) has been defined as part of Egq. (2.13), the :
¢ (
;:E; quantity A is given by Eq. (2.20) and :
4 3
» *See, for example, Hildebrand, Methods in Applied Mathematics, 0
o Prentice Hall Inc. N. Y. 1952. N
A \
-;: A
‘. "
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where erfc(t) denotes the complimentary error function
* 2

erfc(t) = -z—;f e * dx . (2.26)
/n t

Having found fl(xl) and fz(xz), one can find the function f3(x3)
from Eq. (2.23a). We have not given this last solution here even
though the way to find it seems clear. The reason is that fz(xz)

controls the diffusion into the cavity and f, is not required to

3
determine fz. We note also that the source strength is strongest
near the cavity separation point so most of the mass flux will

occur at the start of the cavity and not near the downstream end.

The rate at which mass is diffused along the entire length of

the axisymmetric cavity is

. dM
m == g fz(xz)dxz ’ (2.27)

c 222
. 0 2 e erfc/ZAz 22 24
m = (A V T cl)[ V A Zk] €1 \/ LT (2.28)

Equation (2.28) may be rewritten as

222 — 222
. _ e "“erfevr2A 22 1 erfc/ZAz
B = 8rpa’y e [ s -] (o ] . (2.28a)

We note here the fact the first term in Eq. (2.28a) represents the

two~dimensional wrap around solution. For large values of A%, one

can write

-
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i
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ezxzerfCVZ)\ “'1—__" [ i__ - 1 3/2 + o-O] > (2:29)
Ynm Y2xL 2(2a2)
in which case, K
V 27208 4(2A2)

c
+‘1~—[ l—_- %-__1—37?+ o.o] . (2030)

A 27202 V 4(2a2)

If we assume that the constant < has the same order of magnitude
as 8npa20¢po, we can conclude from Eq. (2.30) that the expression
for mass flow rate across an axisymmetric cavity is the same as
the two-dimensional wrap around solution. This conclusion, of
course, 1s based on the simplifications we have effected in the
three coupled integral equations (2.21), (2.22) and (2.23).

These same approximations were employed by Parkin in his theory.
Nonetheless, the good correlations observed between Billet-Weir
experimental results and modified Parkin's model (see Figures 2.2
and 2.3) support the conclusions that we draw from the axisymmetric
cavity diffusion analysis. The reason for this being that most of
the diffusion takes place across the upstream parts of the cavity
where the diffusion layer is still thin and wrap-around is still

useful.
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2.5 Recapitulation

We have explored some of the aspects of gaseous diffusion into
axisymmetric cavities. A modifed Parkin model may be better suited
for the prediction of gaseous diffusion across cavities that emerge
from the leading edge than Brennen's model. We have demonstrated
through an axisymmetric gaseous diffusion analysis that (within the
assumptions and approximations) two-dimensional gaseous diffusion
solutions can be extended to the axisymmetric cavity with the
result that the turbulent mixing length diffusivity of Launder and
Spalding will be useful for the determination of diffusive mass

flow into the two—dimensional flows studied below.
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CHAPTER 3
EXPERIMENTAL INVESTIGATION OF THE BEHAVIOR OF NONSTEADY

CAVITIES BEHIND A WEDGE OSCILLATING IN PITCH

3.1 Introduction

An unsteady cavity flow about a solid body in a pure liquid may
be represented mathematically with the help of cavity flow theory and
it can also be understood physically. The presence of dissolved gases
in the liquid makes the same phenomenon difficult to understand. A
cavity in a pure liquid is filled only with the liquid vapor. So the
volume of an unsteady cavity filled only with vapor grows and
collapses 1n volume according to the motion of the body or according
to the imposed pressure field. In the absence of other flow distur-
bances, the vapor is absorbed and released almost instantaneously
because the time scale of the process of vapor release and absorption
is extremely small compared to the time scale of cavity motion and
hence cavity vapor pressure fluctuations are not seen. In such a
case, the pressure inside the cavity equals that of vapor pressure
of the ambient liquid at the equilibrium temperature at all times,
provided the temperature is not too near the critical temperature.

This situation, however, does not occur in the laboratory or
in practice. There are always certain amounts of free and dissolved
gases present in the liquid. On a cavitating body, these gases
diffuse across the cavity surface and are entrained by the turbulent
flow at the trailing edge of the cavity. This diffusion-entrainment
process is thought to influence cavity volume fluctuations and

associated cavity pressure fluctuations in an unsteady cavity.
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Several investigations have been devoted in the past to the
analysis of steady gaseous diffusjon across the cavity surface.
Parkin and Kermeen (8) studied the molecular gaseous diffusion into
a microbubble, whereas Brennen (9) considered gaseous diffusion from
a turbulent flow into a large cavity. Very few unsteady cavity flow
studies (both analytical and experimental) have been done in the past
in which cavity pressure fluctuations are considered, largely due to
the complexities involved in such studies. Although Leehey and
Jiang (16) measured the unsteady cavity pressures behind a three-
dimensional elliptical foil oscillating in pitch, there appears to
be no experimental study available aimed at a better understanding
of the behavior of unsteady cavities, particularly (a) the cavity
pressure fluctuations and their dependence on the frequency of
oscillations of the body; (b) the source-like nature of the unsteady
cavity; and (c¢) the cavity length fluctuation as a function of
frequency. The present experimental study is aimed at understanding

these aspects of unsteady two-dimensional cavities.

3.2 Exverimental Apparatus

3.2.1 Six-Inch Water Tunnel

The experiment was conducted in the 6-inch recirculating
variable pressure water tunnel at ARL/PSU (21). 1In this tunnel, the
test section velocity was variable between 0 and 50 feet per second
and the static pressure was variable continuously between 0.5 psia

and 50 psia. The velocity was indicated on a digital voltmeter

which read the pressure drop between the settling chamber and the
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test section. The test section static pressure was read by a Heise
type Bourdon-tube pressure gage. The test section was 24 inches
long and was made of lucite to enable visual observations and video

recordings to be made of the unsteady cavity flow phenomena.

3.2.2 Model and Shaft

The foil used in this test was a wedge of rectangular planform
measuring two inches wide and four inches long and was made of
stainless steel. A small slot was made on the cavitating surface of
the foil to mount a pressure transducer that would measure the
unsteady cavity pressures. A small hole was made in the shaft running
axially to the middle of the foil to lead the pressure transducer
wires and also a static cavity pressure tap out of the tunnel. The
support shaft was made of stainless steel and the middle portion of
the shaft formed the trailing section of the wedge foil. The foil and
shaft were fastened together by a pair of dowel pins and set screws.
Two views of the foil-shaft assembly mounted in the test section along

with the hydraulic drive are shown in Figure 3.1.

3.2.3 Drive Svystem

The drive system used was essentially a modified control surface
actuator. It consisted of two plungers actuated by a hydraulic
servo. The plungers were connected to the pitch drive plgte fastened
to the shaft by means of a wire rope. When the servo was actuated
by an amplified sine wave signal, the shaft executed nearly sinusoidal

motion in pitch. Because of the slider crank mechanism, though the
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motion of the plunger was sinusoidal, the motion of the shaft was not.
However, an analysis of the error signals from the feed back unit
showed higher harmonics whose amplitudes were at least 40 dB lower
than the fundamental frequency of oscillation. The angle of attack
of the foil was varied by changing the d.c. offset to the hydraulic
servo. The frequency response of the pitch drive assembly which is
flat up to about 10 Hertz is shown in Figure 3.2. The static angle
of attack of the foil was variable continuously from zero to twenty
degrees. The dynamic angle of attack amplitude was variable
continuously from zero to fifteen degrees peak to peak. Using this
setup, the static angle of attack could be adjusted to an accuracy
of 0.02 degrees and the amplitude of foil oscillation could be
adjusted to an accuracy of * 0.05 degrees. Figure 3.3 shows a

typical cavity behind the wedge foil.

3.2.4 Instrumentation

Unsteady cavity pressure was measured by mounting a crystal
transducer flush with the cavitating surface of the foil. This Barium
Titanate crystal transducer was calibrated in a slosh tube (22) with
a LC-10 hydrophone as the reference. The frequency response of the
crystal transducer mounted on the foil is shown in Figure 3.4. The
static pressure in the cavity was measured by a pressure tap leading
to the cavity from a Validyne diaphragm type pressure transducer.

The unsteady pressures upstream and downstream of the foil were also
measured with a Validyne pressure transducer. This transducer was
suspended from an independent support to eliminate possible effects

of tunnel vibration on the pressure transducer output.
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Frequency Response of Pltch Drive Asscmbly.

Figure 3.2.
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The amount of free air in the tunnel water was determined by
measuring the speed of sound in the upstream part of the test section.
This was achieved by transmitting a gated high frequency pulse (about
120 kHz) through a LC-10 hydrophone and receiving it diametrically
across the test section by a crystal transducer (Barium Titanate
crystal) as shown in Figure 3.5. The distance between the two trans-
ducers for the sound speed measurement was 7.443 inches. By measuring
the time dglay between the transmitted and received pulse on a high
speed oscilloscope (Tektronix 7633), the speed of sound was
determined. The accuracy of speed measurement is within % 30 ft/sec.
An example of the sound speed calculation and the estimation of free
air in the tunnel water is given in Appendix B.2. The dissolved air
in the tunnel water was measured by the conventional Van Slyke
Apparatus. During the course of the experiment, the dissolved air
content ranged between 7 ppm and 16 ppm by moles while the free air
ranged from 3 ppm (speed of sound = 4490 ft/sec) to 10 ppm by
volume (speed of sound = 3730 ft/sec). The measurement of free gas
and dissolved gas in the tunnel ensured that there was enough gas

supply in the tunnel water to maintain dissolved gas diffusion and

entrainment at all times.
All the unsteady pressure data were analyzed through a real time
spectral analyzer (Spectral Dynamics SD-300 and SD-360). The cavity

motions were recorded on a video recorder using a video camera.
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3.3 Test Procedure

The range of test parameters considered for the experiments
were: (a) tunnel pressure: 1 psia -10 psia; (b) tunnel velocity:
10 ft/sec =45 ft/sec; and (c) foil oscillation frequency: 0.2 Hz
-30 Hz. Three distinct phases of investigations were undertaken as

described below.

3.3.1 Video Recording of Cavitv Motion

The unsteady motions of the cavity were recorded on a video tape
using a video camera for several freauencies of foil oscillation for
sufficiently long periods to record many complete motion cycles at
each frequencv. The plan view of the cavity was recorded and it
demonstrated that the flow was nearlv two dimensional. A strobe was
used to obtain time history of cavity motion. Care was taken to set
the frequency of the strobe at a value that was different from the
foil oscillation frequency so that the variations of cavity length
with time could be determined. In this way, the variation of cavity
length for one complete cycle of oscillation could be determined by
measuring the length at a number of points in the phase of the

oscillation as explained below.

3.3.2 Source-Like Nature of the Oscillating Cavitv

These tests were performed by measuring the unsteady pressures
at three field points at the tunnel wall: 32.5 inches upstream and
downstream from the axis of oscillation and 16.25 inches upstream
from the axi: of oscillation. These field points were chosen such

that any "potential flow"” pressures at these wall points due to an

\ RGOS
L"‘_.( an L_(L

f .a.“\.s. \(Aﬂ- JA—

\ s

SN 53

-

.“

-
p -’

\

1 AT A ATy



oscillating cavity being present in the cylindrical test section were

negligible and the results can be thought of as far-field free stream

fluctuations. A computer code, developed by Fernandez (23), was

used to find an upper bound for this effect assuming the shape of the
cavity to be an ellipse. Figure 3.6 shows the variation of pressure

coefficient along the length of the tunnel for the extreme condition
when a body in the shape of an ellipse of semi-major axis measuring

3 inches and semi-minor axis measuring 1.5 inches is kept in the

test section. At each field point, unsteady pressures were measured

for several tunnel velocities keeping the cavitation number constant.

3.3.3 Measurement of favizw 3Jressures

Steadv and unsteady cavitv pressures were measured for several
foil frequencies, cavitation numbers and static angles of attack. The
steady pressure was measured from the pressure tap leading into the
cavity. This pressure tap was connected to the pressure transducer
through a valve venting the line to the atmosphere in the laboratory.
Bv closing the valve only after the formation of the cavity, the
presence of water bubbles in the pressure tap line was completely

eliminated. Unsteady pressure data were analyzed through a real time

analyzer.

3.4 Test Results and Discussion

Sample data from the experiments are tabulated in Appendix B.l.
(A complete tabulation of the experimental data is available upon
request from the author.) The cavitation number was calculated

based on the measured steady cavity pressure. The maximum error
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in calculating the cavitation number is estimated to be 4.8% (see
Appendix B.3). The region of the cavity where the cavity pressure
was measured was nearly two-dimensional. Hence a wall effect
correction appropriate to such flows developed by Hsu (24) was used
to correct the measured cavitation number. An example of this

correction procedure is contained in Appendix B.4.

3.4.1 Cavitvy Length Historv

At low frequencies of foil oscillation (0.2 Hz - 3.0 Hz) it was
noticed visually that the cavity behind the foil seemed to follow the
motion of the foil without any noticeable phase difference between
input foil =Dotion and the resulting cavizv length cnange. However,
as the driving frequency was increased bevond 5 Hz, the phase lag of
the cavity motion was noticeable. Bevond about 2C Hz, there was verv
little, if any, motion of the cavity due to the oscillation of the
foil. It was clear from these visual observations that the cavity
has the appearance of an inertial effect.

The cavity length history was obtained by playing back the video
tape manually on a large television screen and measuring the cavity
lengths at equal time intervals, the time interval being governed by
the frequency of the strobe. The magnification of the cavity on the
television screen was properly accounted for in obtaining true cavity
lengths. The cavity length measurement on the screen was at times
hampered by the "not so clear” terminal end of the cavity. However,

all the measurements were consistently made and the cavity lengths

were measured within an accuracy of three millimeters.
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The time histories of cavity motions for a cavitation number of
0.47 at four different foil frequencies are shown in Figures 3.7(a)
through 3.7(d). It is apparent from these figures that the motion
of the cavity is far from being sinusoidal. The Fourier components
of these time histories are shown in Figures 3.8(a) through 3.8(d),
respectively. It is observed from these results that the cavity
motion consists of frequéncies other than the fundamental driving
frequency and in particular the first overtone is significant in
all the cases. An observation of the spectra at different foil
oscillation frequencies shows that at 0.5 Hz, the motion of the
cavity is close to harmonic motion whereas at 1 Hz the great
increase in the first overtone of the unsteady cavity is apparent.
As the frequencyv is increased, the cavity motion is again close to
harmonic motion as evidenced from the spectra in Figures 3.8(c) and
3.8(d). It is of interest to compare gqualitatively these amplitgdes
of haroonics of cavityv motion with the linearized unsteady cavity

theory. 1If we denote 2(t) as the cavity length at an instant, we

ey = /2 (3.1

where a(t) is the angle of attack and ¢ is the cavitation number.

may write (see Chapter 5)

For the oscillating foil motion, we may write

a(t) = ao(l + sert) , (3.2)

where eao denotes the amplitude of pitching motion. Recognizing

the fact that ¢ is a small number, we can write for 2(t),
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Zu0 £ jwt ez j2ut
(L) = T(1+EeJ -5 e +eee) (3.3)

The similarity between the measured harmonic contents of cavity

length and those obtained from Eq. (3.3) is now evident. Figure 3.9
shows the variation of amplitude of unsteady cavity motion (defined
as the peak to peak amplitude normalized with respect to steady
cavity length) as a function of the reduced frequency. It is clear
that the amplitude of unsteady cavity motion decreases rapidly with
increasing frequency. It is also of interest to observe that the
amplitude of unsteady cavity motion peaks at a particular value of
reduced freaquency. Several attempts were made to measure the phase
difference between the cavity motion and foil motion. Because of the
extreme difficulty involved in such measurements, it is not surprising
that no meaningful data were obtained, using the present measurement

technigue.

3.4.2 Source~Like Nature of Oscillating Cavitv

Figures 3.10 and 3.11 show the plots of the relative root mean
square pressure level in decibels at 32.5 inches upstream of the pitch

axis as a function of the test section velocity. The foil oscillation

frequency is relatively low, being less than 2 Hz. It is seen that
the unsteady pressure varies as the sixth power of the test section
velocity. This indicates that the oscillating cavity behaves like a
dipole source even at these low frequencies [see for example,

Donald Ross {26) and Billet and Thompson (27)]. Figure 3.12 shows a

similar plot of unsteady pressure versus test section velocity at a

E
|
)
|

point 32,5 inches downstream of the pitch axis. Here again, the
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dipole behavior of the oscillating cavity is very clear. Figure 3.13
depicts the measurements at a location 16.325 inches upstream of the
pitch axis. At an oscillation frequency of 10 Hz, the unsteady
pressure varies as the eighth power of the test section velocity.
This variation suggests that the oscillating cavity behaves like a
quadrupole at this frequency. This 1is possibly due to the phase
lag that exists between the motion of the foil and the motion of
the cavity at high frequencies. The oscillating foil and the
oscillating cavity each constitute a dipole source and with the
adequate phase lag that exists between them at high frequencies,

they jointly constitute a quadrupole source.

3.4.3 Cavitv Pressure Measurements

The zeasurement of steady cavity pressures as well as the
unsteady cavity pressures were accurate to within 2%. The steady
cavity pressure is normalized with respect to the ambient vapor
pressure of water. The variation of normalized steady cavity
pressure as a function of the parameter o/a is shown in Figure 3.14.
The average value of the dissolved gas content in the tunnel water
was 9 ppm by moles and the average value of the free air in the
tunnel water was 4 ppm by volume during these tests. The steady
cavity pressure is seen to be always greater than the vabor pressure
of water at the ambient temperature. It is observed that larger
cavities (lower cavitation numbers and/or higher angles of attack)
sustain higher cavity pressures than smaller cavities. 1In the

range of o/a between 2 and 6, it is observed that the steady cavity

pressure has a nearly linear relation with o/a. Flgure 3.15 shows the
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variation of normalized steady cavity pressure at a steadv angle of
attack of 8 degrees as a function of the reduced frequency parameter
k'. [Parkin (28) has shown that for cavitating oscillating foils,
the appropriate non-dimensional frequency is k' = k//T + o, where k
is the reduced frequency in the non-cavitating case, k = mS/UQ.] The
amplitude of oscil .ation is 2 degrees peak to peak. It is observed
that the steady cavity pressure increases with frequencv, reaches a
maximum value and then decreases with further increase in frequencv.
This can possibly be explained by the entrainment process behind an
oscillating cavity. As the oscillation frequency increases, it
appears as though the re-entrant jet behind the cavizvr bYecomes

increasingly staple until a certain Irequency is reacred. The stable

'

re-entrant jet reduces air entrainment behind the cavitw¥ ana hence

Ny

the cavity is able to sustain higher cavity pressures. This

TEellT

situation however changes at high frequencies of foil oscillation
wherein the re-entrant jet becomes unstable due to the high frecuency
surface waves interacting with the re-entrant jet. At high foil
oscillation frequencies, the cavity remains essentially stationary and
therefore the entrainment rate is equal to the gas diffusion rate
resulting in constant cavity pressure. In other words, so far as
steady cavity pressure is concerned, very low frequency oscillations
of the cavity and very high frequency oscillations of the cavity have
the same effect. It is quite interesting to observe that the
frequency at which the maximum steady cavity pressure occurs and the
frequency at which the maximum change in cavity length occurs (see

Figure 3.9) are quite nearly the same, at k = 0.04.
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The variation of unsteady cavity pressure normalized with
respect to the steady cavity pressure as a function of the reduced
frequency is shown in Figure 3.16. Here the steady angle of attack

is 15 degrees and the amplitude of foil oscillation is 4 degrees

peak to peak., It is clear that the unsteady pressure peaks at a

reduced frequency of about 0.05 and then drops off rapidly with

- . ]
increase in frequency. This behavior of unsteady cavity pressure Qy
N
: .
with frequency may be explained from the unsteady cavity length e

data. At very high frequencies, there is very little motion of the

r‘-{{

cavity and hence the cavity pressure is verv small. These trends

in unsteadv cavitv cressures agree wel. wi:In Ithose of Jianz anc

:,;B
+&

>

" e
.;-J
S '

Leehev (17). Figure 3.17 similarlv shows the normalized unsteadv
cavity pressure as a IZunction of reduced frequency at a steadv
angle of attack of 8 degrees and amplitude of oscillation of

2 degrees peak to peak. Here the peak unsteady cavity pressure
occurs at a reduced frequency of 0.l6. This is to be expected
because the cavity at a foil angle of 38 degrees is smaller
compared to the cavity at 15 degrees and hence it has a higher

resonant frequency.

It is interesting to observe from Figure 3.14 that the linear
relation between the cavity pressure and the parameter g/a enables
one to estimate the cavitation number, based on cavity pressure, in
terms of free stream static pressure, the vapor pressure at the

ambient temperature, the free stream dynamic pressure and the angle of

attack:
p@ - 0.7[‘ pv
¢ — 0.0975 . (3.4)
@ Q v
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3.4.4 Recapitulation

These experiments on unsteady cavities have given us some insight into
their behavior. The variations in harmonic content for the motion of
the cavity have been clearly established. The source-like nature of
the oscillating cavity has been characterized as a dipole source at
low frequencies of oscillation and approaches a quadrupole source at
high frequencies. One would expect to see a monopole contribution as
well because of the cavity volume fluctuations and Fig. 3.13 suggests
such a possibility. However, this experimental fragment is
overwhelmed by the bulk of the presently available data favoring
hicher—order singularities. Since the cavietv and Zoil generallw are
rather large for a six-inch diameter test section, the influence ot
tunnel walls on these experizmental findinags remains to te

investigated. Low cavitation numbers and/or high angles of attack

result in higher cavity pressures. Unsteady cavity pressure is seen

51%&(

&
,l'('r( ’

to be significant only at low frequencies of oscillation.
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CHAPTER 4
TWO-DIMENSIONAL UNSTEADY DIFFUSION ACROSS
A PERMEABLE CAVITY SURFACE

4,1 Introduction

From the previous studies on cavity pressure fluctuations hy Jiang
and Leehey (17) and the present experimental investigations described in
Chapter 3, it is clear that gaseous diffusion plays a very important
role in the behavior of unsteady cavities. Parkin (8) studied steady
diffusion across a two-dimensional cavity surface, while Brennen (9)
considered steady diffusion across a cavity surface from a turbulent
flow.

It appears nowever, zhat a corresvponcing analvsis Ior unsteacv
diffusion in an unsteadv cavitv flow is, to the best oI our Xnowledze,
non-existent. Unsteady gaseous diffusion into a cavity may resul: from
two distinct mechanisms. First, since the cavity length fluctuates,
the gaseous diffusion into the cavity fluctuates. Second, since the
cavitv gas pressure itself fluctuates, the concentration gradient
across the cavity surface is a function of time. In this chapter,
we formulate and solve analytically, the unsteady gaseous diffusion
across a two-—dimensional unsteady cavity surface. The results of
this analysis will give a better understanding of the parameters

that affect the unsteady gaseous diffusion across a cavity surface.

4.2 Assumptions

It is assumed in the following analysis that the flow is in-
compressible, two-dimensional, isotropic and turbulent. (Turbulence
is inherently three-dimensional in nature. WNonetheless, a two-

dimensional flow field with unit depth may be considered for diffusion

. LI

‘ (}
. { N
LRI TR P T T TR BT AT AN Y A Ty E N0 O T Y o P g g Co Ty ’ '
ﬁxl&&-d.Cx&’.m..xu,.c':tb:mmldfdh&;&k:dﬁxﬂf SO0 P20 DY AN e ATt ot A b S G RO,



:”. .'.l‘:. . !‘“;a l.t.l”'! “'(l‘. »

71

analysis.) Boussinesq's hypothesis (29) is used in turbulence modeling
and G. I. Taylor's (30) statistical theory of turbulence is used in
estimating the mass diffusivity for the flow field. It is assumed that
the mechanism for turbulent momentum transfer and turbulent concentration
transfer are identical. It is also assumed that the gaseous diffusion

occurs instantaneously across the cavity surface.

4.3 Theoretical Analvsis

Gaseous diffusion will occur when there exists a dissolved-gas
concentration difference between the free stream and the liquid on the
cavity surface. If aj denotes the dissolved gas content in the free

stream in parts per million, b»v moles, then bv Henrv's law,

che maxitun

artial pressure of gas in the free stream P__ is
P 7S

= A.
PFS al3 , (4.1)

where 8 is the Henry's law constant. If (t) is the instantaneous
Pg

partial pressure of non-condensable gas in the cavity, then the mean

concentration difference c(t) expressed in moles is

Ps
c(t) = (o —-B—-) . (6.2)

We assume, as is customary, that the mechanism for turbulent
diffusion of gas in the liquid and across the wall and the turbulent
momentum transfer are similar and that gradients in mean velocity can
be neglected. Then, the turbulent diffusion is due solely to the
gradient of the mean concentration c(x,y). Consider a turbulent flow
field having a uniform mean velocity U_ in the positive x-direction, as
shown in Figure 4.1. Let the instantaneous concentration at a point

(x,y) be C(x,y,t). Also, let C_ be the concentration at large distances
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Figure 4.1 Boundary Conditions for Unsteady Gaseous ]
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i
from the origin and C0 be the saturation concentration on the cavity l,::;::
%t
wall. let ¢ = C - CQ be the concentration difference. From Fick's law ':"::
o
of diffusion and conservation of mass [see, for example, Batchelor (31)] g~v
Vi
it follows that “:
iy
S,
> 3c 2 5‘3.‘

(T« v)e + 35 = xVc (4.3)

where V2 denotes the Cartesian Laplacian operator and k is the molecular

1

~
rad,
Pl
diffusivity. >
Let the instantaneous velocity components be represented by E;,.
- A
(U” + u'), v' and w' in the three orthogonal directions and let ¢ = ¢ + ¢' ':$ ¥
'
- N\
where ¢ is the time mean concentration difference. The components u', ' ':
and w' are the instantaneous velocity fluctuations and c¢' is the .:'_‘F.\_
’
e
&
instantaneous concentration difference. Then, Eq. (4.3) becomes [see, ::::
l""
. e e,
for example, Goldstein (32)] i
3¢ sc 2- 3¢ 3! ac 3¢ 3c sc! N
—+U0 —-xVe¢ +—=——+ (U —+u' —+u' — +v' =+ v' — W
at = 3x 3 [ ® X ax ax v 3y ::
()
N
'i'. "
- [ St
- '
+ ot Sy LS KVZC' =0 . (4.4) e
gz 9z *
o
Time-averaging the above equation, we obtain ..,.s
3c c _ 3 3c 9 3c 3c X
— U__.= K——U'C' 4 — K'——V'C' 4 — l(—"W'C' r»,;q
5 " Ve 3x 3% (% 3w ) 3y( y Vv (e 5 N
AN
7
el
(4.5) R
where the overbar indicates time averaging. Equation (4.5) shows that in G
\|:l
turbulent flows the eddy concentration transport terms - u'c', = v'c' and 1
- - o
—_— . ac 3c J
- w'c' add to the molecular concentration transports 3w < 5; and
\
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K %%-respectively. The eddy transport terms are large compared to

molecular transport terms (32). Therefore, the latter are neglected and

o SN

B

Eq. (4.5) reduces to

(4.6)

<

We now restrict our study to two-dimensional flows. We represent

e

2

the turbulent shear stress pu'c' and pv'c' using Boussinesq's hypothesis

-

P

as

YA

o

e (4.7b)
" 3

where AT is the exchange coefficient or eddy mass conductivity. Let v¢

denote the eddy mass diffusivity. Then,
“C = AT/Q ’ (4'8)

where p is the density of the liquid. Substitution of Egqs. (4.7) and

(4.8) in (4.6) yields

>

3c
T

KRS SEA

The boundary conditions pertinent to the two-dimensional unsteady

e

= .
¥

diffusion are:

L4 Nt 2 o 30 o
N A

(4.10a)
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T=e (l+c(r);y=0,0<x<y (4.10b)
where 2(t) is the unsteady cavity length given by
a(e) = g (1 + ea(e)), (4.11)

where ¢ is a small quantity.

We now let
c(x,y,t) = Zs(x,y) + Zu(x,y,c) , (4.12)

where cg and c, represent respectively, the steady part and unsteadyv par:

of the concentration c.

'

X

o
MY
Substitution of Za. (4.12) in Za. (4.9) results in two equations {’ﬁ
AN
- 2— 2= K%
acs ) cs ] cS -
= I'
Vo “ %7 *—3) » (4.13a)
X ay
and
3cu acu 9 c, 9 cu
_at._+ g o \,t(___z + — ) . (4.13b)
9x 9y

The steady partial differential equation (4.13a) satisfies the steady

part of the boundary condition (4.10b) viz.,

c =c ; ¥y =0, 0<x<g . (4.14)

The unsteady partial differential equation (4.13b) satisfies the unsteady

part of the boundary condition (4.10b) viz.,
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' c, = coc(t) sy =0, 0<x <)y . (4.15) ;wl
K] ]
K iy
The steady partial differential equation has been solved by Parkin (8).
!
: The solution of Eq. (4.13b) subject to the boundary conditions (4.13) is §:$
&
[}
:f obtained in stages. First, a point source solution that has the prorer Nﬂ
0
’ -t
v radial symmetry and behavior is obtained. Second, the point source §F

. solution is used to formulate an integral equation relating the

4
4 I 3 . % .
Q, concentration at a fixed point and the mass flux per unit length along the 4;_
¥ . b5,
cavity. Third, the concentration difference at the cavity surface is used .
,.. Ry
éq to solve the integral equation. b
ﬁ‘.
1
{ The fundamental solution of Ea. (4.13b) for an oscillating unitc o
X \
source at the origin is (See appendix C.1)
o
J
{ ) }'*
—_ ' 0 ~ =ik ) NN
- T(x.vik) = —— % (RVx~ + v- SATIRIR Y 5
c{x,v;k) ETe xO(R X vi o) e , (4.14) = :
) i ’ ) &
t "
¢ Dy

where K,(z) is the modified Bessel's function of the second kind. It

o
- -

-
J&ﬂlb!lﬂﬁ‘

bl should be noted that r, x and v appearing in Equation (4.16) are :
e
N up ad
dicensionless and that R = 75 2 "diffusive Reynold's number.”
[/ Ve A
) ,-
’;l: We now introduce the harmonic oscillations of the unsteady boundary o)
’ 'f::
&‘ conditions resulting from the angle of attack oscillations at a circular o
. N
e frequency of w radians per second. Suppose that the cavity length ~
to¥ [
‘h‘
1y oscillations lag the foil oscillations (see Chapter 5) by a phase angle of ?'f
] L L?
1"l . . : '( + ) \f.
N ¢. Then, the unsteady cavity length at x = 5 is given by e, el wt+9) or N
N j jmt‘
g € 2, elde NN
" A
D) i
I:: I::
3, )
: N
1, by ¢
”, ‘.
"“'.
& hyad
“’ -{'.‘:
X L]
CR NN
d .
W :: :
L
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The gas pressure within the cavity P;(t) may be written as

| P(E) = p (1 + 6 o(t)) (4.17)

where § is a small quantity.
With the assumption that the harmonic cavity pressure fluctuations

lag the foil oscillations by ¢,, we may write from Eq. (4.2),

a

c(t) = (al - ca) -a sp (4.18)

So that the concentration fluctuation c,(t) across the permeable surface

is given by

3Lt + 4 )
av e

’

i.e.,

e o= 5 ) jwe
- a’ e

2 y ("3019)

&)

—~—— -

0
P
r
~

1

t

194

where ¢5 is the phase angle between foil motion and cavity pressure
fluctuations. Equation (4.19) clearly indicates a phase lag of 7 radians
between the concentration fluctuations and cavity pressure fluctuations.

The steady concentration difference c, at the permeable surface is
o P

-a) . (4.20)
a

Let f(x;k) be the mass flux per unit length. Then the function c(x,y;k)

can be expressed in terms of f£(x;k) as follows:

) . )
] clx,y3k) = = [ E(gsk)e RTIOD)

k(R (-©)" +y7 ) g,

(4.21)

(1 + eej¢) .

o
it
o‘]ln

o)
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If we now require that c(x,o0;k) = cy =56 eJ® in the interval 0 < x < 2,
the source strength is determined from the integral equation

i |

X R(x - €) -jk(x-£)
co— @, S e a . E;K; [fo f(g;k)e X § KO(R(x—g))e Jeix dg
2 -R(g=x) jk(g-x)
+ [ flg5kde K (R(g—x))e dg] (4.22)

X

where the positive branch of the square root has been taken. The function

c(x,y;k) also satisfies the conditions that c+o as (x2 + yz) + » and that

3c/ov(x,0) = 0 when x < 0 and x > 2 .

In

2. {%,22) we have combined the steadv as well as the unsteadv

trl

boundarv conditions for both cavity length and cavity pressure. The
reason for this is that the point source solution in the unsteady case
reduces to the steady source solution as the reduced freaguency k goes to
zero, This fact also implies that § = &(k,0) , € = e(x,s) and that 3§ and
¢ both vanish as k + o.

In order to determine f(x;k), we shall make use of the fact that R is

a large number for the present study. Therefore, X, in Eq. (4.22) can be

replaced by the first term of its asymptotic expansion,

Ko(z) = e-z\/%; . (4.23)

A further simplification can be obtained in the second integral in Eq.
(4.22) by noting that the strong negative exponential will cause f(Z;k) to

contribute to the integration only near § = x. Therefore, we replace the

—

second integral in Eq. (4.22) by the approximate value,\/%i f(x;k) Al .

Y 2R-jk
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P bt
N With these approximations, Eq. (4.22) may be written as .:,-
& [g*)
. po;
(L -3 - — "‘-F
5 3¢, 1 n % £(gsk)e TR(xE) £(x:% )V O
c -a be = — — / dg + ——~ . (4.24)
. o a ZnAT 2R ° N
X Vx - & Y2R - jk \
F‘-.
N If the Laplace transform of f(x;k) is denoted by F(s;k), we can transform '
!
Eq. (4.24) to find g
_ gt
D " ;5‘
- - J
« 24, VR (e =a Se %) e
a : F(s;k) = . (4.25a) Fah's'
] 1 . 1 ] <, 9
A
Y (s + jk)l/z (2R - jk)l/z :.";-u.
R T
Rearranging terms, we have AN
- o N
L
bre - jaa :
Y 2. ¥2R (¢ - a_ Ce ) V2R - Gk ¥s o+ 3k ~]
>, F(s;k) = — 2 - (4.235) R,
b ! * )
- s[vY2R - jk + Vs + jx] |
-i
. The inverse of this transform gives (see Appendix C.2) for f(x;k') the 7\
L g
‘_’, result,
'
Y a  b> = - _ bva —
Yl f(xik) =0[=-=— e erfc(b/x) - —= erf/ax | , (4.26)
a a a
’ i
’ where
y — Sl —
; Q = 2.&1, 7/2R (c:o - aa § e ) V2R - ik, (4.27a)
] a =ik , (4.27b)
B Ny
iy
N,
'q ————— \l‘ X
{ b = V2R - jk , (4.27c) o
) MW
N -
e @ = 2k - 2R, (4.27d) :5
\ - _ o
,{ £ = 2(t)/b as before, ::;
o
by "Q"
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and erf(x) and erfc(x) denote the error function and complimentary error
function respectively. We note here the fact that the function f(x;k)
which represents the mass flux per unit length is independent of the
cavity length.

The rate at which the mass is diffused per unit width along the

entire length of the permeable interval is obtained from

. 2
M(k) = [ f£(x,k) dx , (4.28)
o
. Z 2 - —
i.e., M(k) =20 f (%-%—e X arfc brx —b—iierf Yax ) dx . (4.29)
o a a 1

The integral in Eq. (4.29) has been evaluated in Appendix C.3 and the
result is

. - 2 - - 3 - 2 - -~
M(k) = % [al + %— e ug’erfc(b'\/:] + E—_—_ erf Yaz - g— - b Ya gerf Vatg
a a ara

a

- b \/{;—-e‘“ + =2 erf\at] . (4.30)
a

Equation (4.,30) gives the instantaneous unsteady mass flow rate along the
cavity surface. We now compare this instantaneous mass flow rate relative
to My, the mass flow rate obtained in the steady limit. By letting

the reduced frequency k go to zero, we obtain the steady limit for

mass flow rate as

Y ~ . -
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ZRZO \/——— .

e erfc VY2R2 22
M = 4ARe [ v \/=2-+1 . 3D
o ApRe 7R TR~ 2R

We can now write the instantaneous mass flow rate in terms of the quasi-

steady mass flow rate as
L R TS A T (4.32)

where ﬁor(k) represents the absolute value of the frequency dependent mass
flow rate aﬁd ¢ is the phase angle by which the instantaneous mass flow rate
leads or lags the steady value.

It is of interest now to look at the relative effects of varving the
concentration and cavity length on the unsteady mass {low rate. 3By a
simple sensitivity analysis of the quasi steady mass flow rate (see
Appendix D.l) we obtain

Aco AL

B e ——

, (4.33)
o 22
o

o'|% .

where the A before a quantity represents a small change in that particular

quantity. For the experimental investigation reported in Chapter 3, the

Ac

maximum value of E—g-is of the order of 5%, whereas the maximum value of
o

%£ is of the order of 20%Z. Thus, it is clear that for the experiments

o

reported in Chapter 3, the contribution to gas diffusion across the cavity
from changing cavity lengths and changing cavity gas pressure are equally

significant.




4.4 Recaoitulation

We have developed an analytical model for the prediction of gaseous
diffusion across a two-dimensional unsteady cavity surface. This model
takes into account the change in cavity length as well as changes in
cavity pressure in predicting the gas diffusion across the cavitv surface.
The expressions for mass flux per unit length and mass diffusion rate
across the entire cavity length reduce to those obtained by Parkin (8)
when the reduced frequency k is zero. The instantaneous mass flow rate
across the unsteady cavity may be easily obtained from the auasi-steady Sfdﬂ

mass flow rate and the lag function. We reiterate here the general fact B

that this unsteady gaseous diffusion analysis is vaiid onl+v Zzcr harmonic 5
. . ';.;,"..‘d
variations in cavity gas pressure and possibly in cavity length. QYR
LRI
TR e
UL
Nonetheless, this analysis could be extended to encompass a general AT

nonharmonic motion of the cavity by Fourier representation of the cavity
length and cavity gas pressure fluctuations, provided that one first

, . by
accounts for the nonsteady cavity closure conditions to be considered ﬁdﬁﬁ

next. i
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CHAPTER 5

A STUDY OF NONSTEADY CAVITY CLOSURE

S.1 1Introduction

The analysis of a two-dimensional unsteady cavity of finite

extent (i.e., non-zero cavitation number) has been studied among Lo
others, by Parkin (28), Wu (5), Guerst (33) and Acosta and :dSQ
Furuya (34). The fact that a cavity volume change in two- Qﬁdﬁ
dimensional unbounded flow would create infinite pressures

puzzled many researchers and was thought to be non-physical at

the time. Wu (5) points out the fact that such cavity volume
changes in two-dimensional f£low are indeed physically plausible

and mathematically thev represent "inner” flows of some three-
dimensional outer flows. Acosta and Furuya (34) rightly exemplify
this fact by the existence of unsteady cavities in water tunnel
experiments.

The presence of gases in an unsteady cavity flow makes the
study of such flows even more interesting and introduces more
complexities. Recentl&, Kato (35) has pointed out the general lack
of knowledge that exists in understanding transport phenomena at
the cavity surface. The results of thé unsteady cavity flow
experiments reported in Chapter 3 have clearly shown that the cavity
pressure does not remain constant during the oscillation of a finite
cavity and indeed even the steady gas pressure of an oscillating
cavity depends on the frequency of oscillation! Clearly, the

unsteady gas diffusion plays a role in the dynamics of an unsteady

cavity.

ARG ARAA RN RO . y ' [N OGO BX LS
e s L T S T s s e s M I i b e e B Dt
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The idealized closure condition in cavity flow means that at
every instant, the cavity-body system is a closed body. Several y
models have been postulated in the past for the closure of an
unsteady cavity. Among them are the kinematically closed model ;g%ﬁ
proposed by Tulin (36), the constant volume model proposed by Guerst it
(33), the fixed cavity terminus model proposed by Leehey (37) and
the generalized cavity closure model proposed by Parkin (28). g”hﬁ
Acosta and Furuya (34) have demonstrated that Parkin's model which

involves the evaluation of a difficult retarded integral has the

A,
proper quasi-steady limit when the reduced frequency goes to zero. §§§§;
The closure condition postulated bv Parkin has been and remains to §§£i

S
be difficul: to evaluate from first principles of the analysis ﬁ?u
although Parkin proposed a step-bv-step numerical scheme which has ﬁ%}?
never been employed. 1In the present study, we shall evaluate the ?ﬂtf

A
phase angle between foil motion and cavity motion by means 6f a 'f.
simplified kinematic nonsteady closure condition and then relate the lgﬁ%f

R
cavity pressure fluctuations and cavity volume fluctuations. Such an ﬁ%éi
analysis should lead to (1) a better understanding of the gaseous :;f

LI
entrainment behind nonsteady cavities and (ii) relate observed E%;{
pressure pulsations to unsteady gaseous entrainment. iﬁgl

ORI

e
5.2 Steadv Cavitv Closure Eﬁgﬁ

We first look at the steady cavity closure when there exists a .gaéi
certain amount of gas in additfion to water vapor within the cavity. ‘?&h
Continuity of mass flux of gas through the cavity dictates in kkkx

general that the mass flow rate of gases through the cavity must ,igq
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equal the rate of entrainment behind the cavity plus a possible rate
of change of air mass inside the cavity. In the limit of steady
flow this last part will vanish. Thus, we can estimate the rate of
entrainment of gases behind the cavity by estimating the gas
diffusion rate through the cavity surface.

For a flat plate at a small angle of attack a., we can
estimate the cavity length EO at a cavitation number o (28) as

(see Appendix E.l)

2a
- 0
20 5 . (5.1)

From the steady cavity pressure measurements repvorted in Chaoter 2

-

(see Figure 3.14), we can approximate the dependence of cavity gas

pressure and ¢/a. as

J

P
£ e - 0.0976 &+ 0.74 . (5.2)
P a

v 0

If we denote by @y the amount of dissolved gas in tunnel water,

the concentration difference (in ppm) that exists between the

free stream and cavity surface may be expressed as
c=a - Pe/B - (2.9)

Thus we observe from Eqs. (5.2) and (2.9) that the concentration

difference ¢ is a function of a/ao. We can obtain the mass flux

into the cavity from the upper surface as well as the lower surface
of the two-dimensional cavity from a modification of Parkin's

diffusion model as

4dpov ¢

N = — [VR +/z - /7] , (5.3)
°
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where vp 1s the turbulent eddy mass diffusivity and where £g
represents the cavity length on the upper surface and %) represents
the cavity length on the lower surface. Figure 5.1 shows the
comparison between the gas entrainment rates when the cavity gas
pressure is nonzero and for a hypothetical purely vaporous cavity.
This fictitious vaporous cavity is used only to bound.the diffusion
rate. We observe that the entrainment rate decreases with the
presence of gases within the cavity as expected. For small values
of a/ag, Ehe difference in entrainment rate is hardly noticeable
because at low values of o/ap the mass diffusion rate due to an
increase in cavity length is more significant than the decrease in

mass flow rate resulting from increased cavity gas pressure.

5«3 Yonsteadv Cavitwv Closure, Phase Relations

The difficulties encountered in measuring experimentally the
phase angle between the foil motion and cavity motion has been
alluded to in Chapter 3. Because of the lack of knowledge that
exists in the literature in the aetermination of the present phase
relations, we turn to physically motivated arguments aimed at
finding the phase difference between cavity length oscillations and
hydrofoil pitching oscillations.

Consider a two-dimensional cavity behind a foil, as shown in
Figure 5.2a. The foil has a steady angle of attack ay. We suppose
that the foil oscillates in pitch about B with a frequency of w
radians per second, the amplitude of oscillation being A.. The
angle of attack =(t) at any instant is then given by «(t) = =0 + A

sin wt. We now approximate the upper surface and lower surface of

-
e ; UR
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vy RO R R G N S XD O R OO O, S R X O O RO

(L)
LA
] .

1) i



87

1.0

—~VAPOR CAVITY
|
0.8

-
|
0.6

VAPOR + GAS—
CAVITY

Entrainment Rate Behlad a Stcady Two-Dimensional Cavity.

) -

0.0451
0.040}
0.035
0.0304-
0.02%-
0.020;3
Figure 5.1.

(o=}

d ‘
—53- HLd3Q LINA / IN3ID144200 MOTH 3AISMEAI




88

CAVITY o
/ SURFACE o

\ .
ENTRAINED o
GAS -

5.2a Two-Dimensional Cavity Around an Oscillating
Hydrofoil
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5.2b Physical Plane Representation of Linearized Two- o
Dimensional Cavity
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the cavity by the slits AC and BC respectively as shown in Figure 5.2b.
The closure condition of the nonsteady cavity depends on kinematic
waves (28), having ciastant celerity qc but different travel distances
on the upper and lower surfaces, terminating at a single point C behind
the cavity. For kinematic waves originating simultaneously from points
A and B to reach C at the same instant, there must exist a phase lag
$ in the wave originating from the lower surface relative to the wave
originating from the upper surface. Since a(t) is responsible for
these wa§es, we can say that the phase of the cavity terminus
oscillation lags that of the driver a(t).

If the travel distance on the upper surface is %, and the travel
time from A to C is t,, then ty 1s given by %,/qc.. The travel time on
the lower surface of distance, 2y, is given by t, = (2, - S}/qc if the
cavity is closed. But the difference in travel time between the upper

and the lower surfaces is ty - ty = At - and then w At = CL]

c c
Therefore the closed-cavity termination phase lag is determined by

wAt=¢=:—b' . (5.&)
c

We now recognize the quantity fk-as the modified reduced frequency k'

c
and write

¢ :k' ) (505)

Thus we observe, within the limitations of the present assumptions that
if the kinematic waves (28) from the upper surface and lower surface
terminate at one point at the same instant, the phase angle equals the

modified reduced frequency. This result conforms with the
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qualitative visual observations made during the experimental
investigation viz., at low frequencies there is hardly any phase
difference discernible whereas at higher frequncies, there seems to be
a noticeable phase difference between the foil motion and cavity
motion.

We note in passing, that this simple analysis is consistent with
the linearized approach of Parkin (28), but we have used the
preceeding physical argument in order to avoid the nasty retarded
closure integral introduced in (28). If we were to relax this
consistency, we would replace the factor b by b cos =y, from which we
would have the phase angle as k' cos =, instead of k'. As to be
expected, in the limit, for small oscillations of a vertical plate
there would be little or no phase difference between the upper and
lower surfaces of the cavity.

An additional aspect of the present approximate argumeng is that
the value of At is independent of the fundamental frequency of the
foil oscillation, the important factor being the constant value of q..
Because of this fact this same phase lag, ¢, between profile and
cavity terminus oscillations must apply to the higher harmonics of the
cavity length fluctuations as reported in Figure 3.8 above and as also
suggested by Eq. (3.3). This means that this phase lag angle depends
on.the basic foil oscillation. Cavity oscillation overtones of 2w and

3w, etc., would not have phase lags of 2¢, 3¢, etc, as might be

supposed at first glance.

S.4 Nonsteady Cavity Closure, Entrainment Rates

If the cavity ordinate at any instant is n(x,t), then the cavity

closure condition is expressed as (28),

¢
q (] 7, 0 1 RSN I WA YN
hmw\h£n0wﬂu)ugnmunﬂ.ﬂmmJUmmﬁUmmdﬂ¢MALﬂm&uumhn“mhﬁﬁmuiﬂn‘tuJ.sn
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[ dn=0 (t fixed) . (5.6) Q$%$
body N

Now, we shall assume that the cavity behind a flat plate of chord
length 3; at an angle of attack a(t), at any instant t, may be ﬂhﬁ
approximated by a part of an ellipse fitted to the cavity termination fcﬁﬂ
point, 2(t), and to the leading edge and trailing edée-separation
points, see Figure 5.2a. We also assume that the length of the cavity
2(t) 1is measured from the nose of the flat plate as shown. Then, we
take the equation of the ellipse to be

x-w?, -1,

1 » (5.7)
a2 b2

where (h,k) represents the center of the ellipse and the quantities a
and b represent the semi-major axis and the semi-minor axis of the
ellipse respectively. At any instant, the ellipse will pass through

the points (0,0), (2, - %-sin @) and (b cos a, - b sin a). These

three conditions lead to

2 2
%N‘—z- 1 . (5.8a)
a b
(¢ - h)2 (%-sin a + k)2
3 + — = 1 » (5.8b)
a b

and

(b cos a - h)2 + (b sin a + k)2

a2 b2

= ] . (SQBC)
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For small values of the angle of attack a, we can write from Equations
5.8a, b and ¢,

k:-%S , (5.9)

Njorl

’ (5.10)

(1 + a2, (5.11)

(N4

) - n
st e

- - 1/2
and p =22 gLJtlﬁi&:Ll )

' b NE - )

(5.12)

It should be noted that the cavity length appearing in Egqs. (5.11) and ﬁﬁf
(5.12) is dimensionless, (z/;). From Eqs. (5.9) and (5.10) it is :&&
clear that for small angles of attack, the center of the elliptical
cavity is fixed to the center of the foil. From Fig. 5.2a it is ,%}
apparent that the cavity volume V per unit depth is then simply the A

the area of the semi ellipse

-

'rragz - 1 X
Ve (1 -, (5.13a) '

22 o

PR
LR )

jwt) 'ﬁw

where e =a (1 +Ace , ft

and ;. = ;.0(1 + € ejwt ej¢) . 0

Equation (5.13a) can be written as ' (N

ra 52 (eejd’ + Aa - Ac/ZEO)ej“’c -

2 -H e+ - J.  (5.13b) o
2 °o 2 (- 1/22) e

V =

» ) -
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The steady cavity volume V, from Eq. (5.13b) is

ra b~

~ 1
v, = Z (%, -3 (5.13¢)

so that the cavity volume V at any instant can be written as

v=v(1+ vejmc) R (5.14)
where
ve(eed+aa-229/0-L19 ., (5.15)
22 22

We now look at the conservation of mass flux of gas through the
control volume consisting of the cavity surface, the gas within the
cavity and the mass entrained from the cavity terminus. Let m be
the total mass of gas within the cavity at any instant, ﬁd be the
mass flux of gas diffusing into the cavity through its surfaée and

E be the mass flux of gas entrained out of the cavity through the

cavity end. Then we can write the continuity of mass as

o om °
B o . .
M, m E (5.16a)
Let ﬁa represent the steady gaseous diffusion rate across the
o

entire cavity surface. Then, from Eq. (5.16a), the gaseous mass

entrainrent rate E relative to the steady gaseous mass entrainment

rate ﬁd is given by
o
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-4 . L 3% . (5.16b) it
M M ey,
[o] dO dO )

nF°|“5

By using a quasisteady approach, the incremental mass diffusion
rate due to cavity pressure changes and cavity length changes may be

written from Eq. (5.3) as,

beg e , (5.17) o

where R.u and "'2. represent the steady dimensionless cavity
o (-]

lengths on the upper surface and lower surface respectively. The ey

Ac 'r‘ at‘vz'
quantity E—o- has been evaluated in Appendix E.2 in terms of o/c:o q.f;.igf
° .

and Acol a, and the result is R

ac -0.0976 (a/ao)(Aao/ao)(pv/B)

c
o

(5.18) L

)
o)~ B—" (0.74 - 0.0976 ‘;— )
o O

Assuming that the gas within the cavity behaves isothermally, one may

use the equation of state (see Appendix E.3) to obtain for 3m/3t, e

" '
a_m _ ucob Pco k ch [(; ) .l_)(A . Gej%) + ": e e'N] (5.19) 'i‘;l’l
3t 2RT u 2000 u, o e
e

F M ; 0 » - ~prpm ufﬁv-- vw n » “|J
¥ «v"!«"‘u"'fi"";'»fo'bfv L bfx\.«'a‘Ju'N'? DO u'.‘:'.- ;‘,.'u"..t‘. REAON A l.ﬁ PV 0N et B G, 0 oty s o!l'o."o.‘m NGNS
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where R = specific gas constant (=1718 ft.lb./slug °R),
¢a = phase angle bétween cavity pressure fluctuation and
foil oscillation,
T = absolute temperature of the gas within the cavity.
From Eq. (5.3) the steady gaseous diffusion rate is given by

4pv c pe p
o= L[ V= Lo+ Var e, 1, (5.20)
[+] [o]

o T

where R in Eq. (5.20) is the diffusive Reynolds' number,
R = U;EYth. Eqs. (5.17) through (5.20) may now be substituted in

Eq. (5.16b) to obtain the total entrainment rate é/ﬁd as

o
g Aa pv
0.0976(=—)(— )(3=)
E % % 8 €
0] p - -
“d a, - =X0.74 - 0.0976 T 2 V2 2
o 1 B a u_ 2
o oo
® ]
nuob Pcok ch ) j¢a ) 34
- - [(2.u - 0.5)(Aa + Se ) + zu ce'"] . (5.21)
2RT Ma o] o

o

A polar plot of the total entrainment rate for four different
reduced frequencies is shown in Figure 5.3. The experimental data
points from Figure 3.8 and 3.14 on cavity length amplitudes and a
quasisteady gas pressure amplitude based on the linear regression of
Figure 3.14 have been used in obtaining these calculated data points.
(See Appendix E.3 and E.4 for sample calculagions and tabulated
results). It must be noted that the unsteady entralnment rate
amplitudes in Figure 5.3 are root mean square values and that the
calculated data points in Figure 5.3 refer to a single value of

°/°b' [For different values of a/oo, one might naturally expect to

obtain a family of curves similar to Figure 5.3].
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It is observed from Figure 5.3 that the total entrainment rate at

any oscillation frequency always lags the foil motion. The maximum
phase angle *T' is seen to be about 20 degrees. For large values

of k', the amplitude of the nonsteady entrainment rate tends to
decrease rapidly, as shown by the dotted line in Figure 5.3, with the
limiting value of zero for very high frequencies. Aﬁ least, the
present experimental data for reduced frequencies k' up to k' = 1.0
would seem to indicate such a trend. The rapid decrease in cavity
length amplitude at reduced frequencies k' higher than 0.23 in
conjunction with the time resolution available from the video-tape
records used for measuring cavity lengths made it impossible to obtain
cavity length amplitudes for frequencies higher than k' = 0.23, It
is of interest here to observe that the nonsteady entrainment rate
lags the foil oscillation by nearly 90° at all frequencies. It
appears that as the cavity is increasing in volume, the cavity is able
to sustain higher cavity pressures and thus lower entrainment results
behind the cavity. The uncertainty involved in obtaining data points
in Figure 5.3 is difficult to predict, given the many variables and
agssumptions involved in the calculations. However, the trend
predicted by the semi-empirical model is interesting and should serve

as a guide for future research in this area.

5.5 Recapitulation

In this chapter, the two-dimensional gaseous cavity closure in
steady as well as nonsteady cavity flow is analyzed. It is observed

that the presence of gases within the cavity alters the gas

entrainment rate behind the cavity. The change in steady gas
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entrainment, however, is seen to be insigifnicant as the ratio agla 9
decreases. By imposing the fact that the surface of a nonsteady 1{
cavity is essentially a material surface at every instant and assuming
that the surface waves from the upper surface and lower surface of the e
cavity terminate at one point behind the cavity at every imstant, the
phase relation between the foil motion and cavity motion is obtained.
This phase relation is seen to be consistent with the experimental - ”f
\ observations. The nonsteady gaseous entrainment behind the cavity is *‘ﬁ!
estimated using the nonsteady continuity equation, with the
N assumption that the gas within the cavity undergoes isothermal
compression and expansion. The nonsteady gaseous entrainment is seen
to depend primarily on the cavity volume fluctuations and cavity gas
) pressure fluctuations because it is found that for the range of
. reduced frequencies considered here the diffusion into the cavity is
i quasi-steady. It is also seen that the nonsteady entrainment rate

& always lags the foil oscillation.

&
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

It has been the aim of this thesis to address and resolve some
of the aspects involving gaseous diffusion in steady and unsteady
cavity flows so that the phenomenon of gaseous entrainment behind
a cavity may be better understood and an improved reﬁrésentation for
the influence of the nonsteady cavity in a water tunnel test section
can be obtained.

We have demonstrated very clearly that existing mathematical
models for gaseous diffusion across axisymmetric cavity surfaces are
inadequate. While the exact solution of the three coupled integral
equations formulated in Chapter 2 might result in a more accurate
representation of the gas diffusion phenomenon across axisymmetric
cavity surfaces than has been possible until now, it seems likely
that a more realistic model of the important physics would be more
fruitful. Even so, the highly simplified approach used with the
best experimental results available from the literature appear§ to
give satisfactory estimates of diffusive mass flows into the cavity
from the free stream.

As noted above, a plausible alternative for the solution of the
axisymmetric diffusion problem is by a two-layer diffusion model.
Such an asymptotic solution of the problem will represent a more
realistic physical model of the phenomena which could account for
molecular gaseous diffusion from the free stream into the turbulent

concentration layer and turbulent diffusion from the turbulent

momentum layer into the cavity.
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From the experimental results obtained at upstream and
downstream locations with respect to the unsteady cavities, we have
been able to identify and quantify the unsteady cavity as a dynamic
element. The cavity behind an oscillating foil has been N
characterized as a dipole source at low frequencies of oscillation. ??z
Unsteady cavity length measurements have shown that for sinusoidal
oscillations of the body, higher harmonics of the cavity ?ﬁii
oscillations are important to be considered, especially the first §ﬁ$i
two harQ;nics are seen to be significant. Steady cavity pressures '
are generally seen to be much higher than the vapor pressure. O

Furt ir experiments are definitely warranted, perhaps in a .j{
larger water tunnel, to extend the range and scope of the present
experimental investigation. The measurement of phase difference IR
between body motion and cavity motion for several reduced 5“5?
frequencies would be most helpful in modeling unsteady cavitf
closure. Even so, the unsteady gas diffusion analysis presented in
Chapter 4 in conjunction with the experimental results has enabled a
more realistic cavity closure model to be developed than has been
possible heretofore. A

The steady cavity clossure for gaseous cavities has shown that 3(-N
the presence of noncondensable gas in the cavity does affect the
steady entrainment rate of gases at the cavity terminus. The
formulation of nonsteady gaseous cavity closure involves the ﬁﬁf;
determination of phase angles between the foil motion and 1) G
nonsteady gas diffusion through the cavity surface, 1i) the cavity Jﬁﬁf
volume fluctuations, and 1ii) cavity pressure fluctuations, B

respectively. By a simple cavity terminus closure model, we have R

U T

t ) p
ORI OO .'3‘.30‘.‘\?‘5\«'0’:"‘.-"’0'6‘.o"!v'i?w"‘.i‘i“h‘\ ot
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been able to estimate the phase difference that could exist between
the foil motion and the cavity length motion. The many variables
involved in estimating the nonsteady entrainment rate clearly
suggests the need for more refined experimentation and theory to

understand more fully nonsteady gaseous cavities and the related

turbulent entrainment rates.




102
BIBLIOGRAPHY

l. Preveation of Coupled Structure-Prooulsion Instability (POGO),
NASA SP-3055 (October 1970).

2. Rubin, S., “Longitudinal Instability of Liquid Rockets due
to Propulsion Feed Back (P0GO)," J. Spacecraft and Rockets
3(8) (1966).

3. Xose, G. J. and A. J. Acosta, “Unsteady Force Measurements
on Superventilating Hydrofoils in Heaving Motiomn, J. Ship
Research 13(1) (1969).

4. Shen, Y. T. and F. B. Peterson, "Unsteady Cavitation on an
Oscillating Hydrofoil,”™ 12th Symposium on Naval Hydrodynamics,
Washington, DC (June 1978).

B S Wu, Y. T., "Cavity and Wake Flows,” Ann. Rev. of Fluid Mech.

‘ 4:243-284 (1972).

6. Gadd, G. E. and S. Grant, "Some Experiments on Cavities

behind Disks,” J. Fluid Mech. 23(4) (1965).

7. Epstein, P. S. and M. S. Plesset, "On the Stability of Gasv
Bubbles in Ligquid-Gas Solutions,” J. Chemical Physics
18:1505-1509 (1950).

8. Parkin, B. R. and R. W. Kermeen, "The Roles of Convective
Alr Diffusion and Tensile Stresses during Cavitation
Inception,” Proceedings of JAHR Symposiuym on Cavitation
and Hydraulic Machinery, Sendai, Japan (1963).

9. Brennen, C., "The Dynamic Balances of Dissolved Air and

Heat in Natural Cavity Flows,” J. Fluid Mech. 37(1):115-127
* (1969).

W,
. 0 (Y ™. P \ v ¢80 gt L) |'|'|l|‘\|
L "f'Q"'l't’ﬂ'ti't‘l...l."l“.l'f.l.:.l',.l'..l'..‘l”‘o':‘l'. L NGERCRURG 2t LA, O O TN LS A I



10.

11.

12.

13.

14,

15.

16.

103
Swanson, W. M. and J. P. 0'Neill, "The Stability of an Ai:

Maintained Cavity behind a Stationary Object in Flowing
Water,” Report No. M24.3, Hydrodynamics Laboratory,
California Inscitute of Technology (5 September 1951).
Cox, R. N. and W. A. Clayden, "Air Entrainment at the Rear
of a Steady State Cavity,” Report ¥No. 12, Cavitation in
Hvdrodynamics, Proceedings of a Svmposium held at NPL
(14=17 September 1955).

Rgichardt, H., "The Laws of Cavitation Bubbles at Axially
Symmetrical Bodies in a Flow,” Report No. 776, MAP Reports
and Transactions (15 August 1956).

Billet, M. L. and D. S. Weir, "The Effect of Gas Diffusion
on the Flow Coefficient for a Ventilated Cavity,” J. Fluids
Engr. 97:501-506 (1975).

Song, C. S., "Pulsation of Ventilared Cavities,” Technical
Paper No. 32, Serial B., St. Anthony Falls Hydraulic
Laboratory, The University of Minnesota (February 1961).
Silberman, E. and C. S. Long, "Instabilities of Ventilated
Cavities,” Technical Paper No. 29, Serial B, St. Anthony
Falls Hydraulic Laboratory, The University of Minnesota
(September 1977).

Buse, E., "Effect of Cavitation on Propeller-Induced

Vibratory Forces,” Proceedings of the l4th ITTC,

Vol. 4, Ottawa, Canada (September 1975).




17.

18.

19.

20.

21.

22.

23.

24.

25.

Jiang, C. W. and P. Leehev, "Experimental and Theoretical
Investization of Unsceady Supercavitating Hydrofoils of
Unit Span,” Report Yo. 83481-4, Massachusetts Institute of
Technology . (September 1977).

Brennen, C. and A. J. Acosta, "The Dynamic Transfer
Function for a Cavitating Inducer,” J. Fluids Engr.

28 (1976).

Hord, J., "Cavization in Liquid Cryogeas. 1III. Ogives,”
NasA Ci-ZZAZ (1973).

Greitzer, J., "The Stability of Pumping Systems,™ J. Fluids
Engr. 103(2) (June 1981).

Catalogue of Facilities, Information Committee of the
16th ITIC.

Bobber, R. J., "Underwater Electro-Acoustic Measurements,”
Naval Research Laboratory, Washingtoa, DC (1970).
Fernandez, J., "A Higher Order Surface Singularity Method
for the Axisymmetric Inverse Problem,™ ARL/PSU T™ 79-125,
Applied Research laboratory, The Pennsylvania State
University (1979).

Hsu, C. C., "On Wall Effects in Cavity Flows,” J. Ship
Research 28(1):70-75 (March 1984).

Van Houten, R. J., "The Transient Cavitation of a Two

Dimensional Hydrofoil-Comparison of Theory and

Experiment,” MIT Ocean Engineering Report (August 1979).



Ross, D., Underwater Noise, Perzamon Press (1974).

Billet, M. L. and D. E. Thompson, “3lade Surface Cavitation
Noise,” Joint Symposium on Design and Operation of Fluid
Turbomachinery, ASCE/IAHR/ASME, Vol. II (1978).

Parkin, B. R., "Fully Cavitating Hydrofoils in Nonsteady Motiom,"
Report No. RM-1939, RAND Corporation (July 1957).

Schlichting, H., Boundarv Laver Theorv, McGraw Hill, p. 733

(1979).

Sherwood, T. K. and R. L. Pigford, Absorption and Extraction,

Second Edition, McGraw Bill Chemical Engineering Series,

Batchelor, G. H., An Introduction to Fluid Dvnamics, Cambridge

University Press, p. 33 (1981).

Goldstein, S. (editor), Modern Developments in Fluid Dwnamics,

Vol. 2, Dover Publications, p. 647 (1961).

Guerst, J. A., "Linearized Theory for Two-Dimensional Cavity
Flows,” Thesis, Technische Hogeschool, Delft, The Netherlands
(1961).

Acosta, A. J. and O. Furuya, "A Brief Note on Linearized
Unsteady, Supercaviting Flows,” J. Ship Research 23(2)
(1979).

Kato, H., "On the Structure of Cavity =-- New Insight into the

Cavity Flow: A Summary of the Keynote Speech,” International

Symposium on Jets and Cavities, FED Vol. 31 (November 1985).

A A o T L e N R e e [y DZOUOOCDOOOOLOI0 ) w0 \ ) Y b
' A!‘ '1‘ * 4- ".' gt 'ﬂi\ "‘““‘h"\‘v"h"‘c‘.‘n"‘l"'\“.G..‘t”‘l‘.‘""Q‘»‘l"\\"..."" '.‘.v.ﬁ.:'i f“‘l 0"'!‘:‘0‘. O.!.' l“‘!'i‘"l .h‘:"‘:‘l DA \‘Q.!.l'a'l.g' '. ?.-":.l.. ‘



el FETAYFR VNN —

106
36. Tulin, M. P., "Steady Two-Dimensional Cavity Flows about Slender
Bodies,” David W. Taylor Model Basin Report 834, Washington, DC
(1953).
37. Lleehey, P., "Boundary Conditions for Unsteady Supercavitating
Flows,” Proceedings of the 4th ONR Symposium on Naval

Hydrodynamics (1962).

E
E
_

BA2ON0 Y 0y o T ™~ y -~ R - - )
i T I A T e T T O R e o D P Ay R AT R ety



197

APPENDIX A

DETAILS OF ARISTMMETRIC DIFFUSION ANALYSIS
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A.l1 Asvmototic Evaluation of Integral in Eaquatiom 2.10

The integral in Eq. (2.10) is

21 <) \/:n2 - 2rcosf

1= 2 e

0 sz - 2rcos@

where

m2=(x-5)2+r2+1 .

(We recall here that the distances r, x and £ are non-dimensionalized

with respect to the radius of the cavity and A = U, a/2x is a large

number of the order 1000.)

We use laplace's method (see, for example, Nayfeh, A. H.,

108

(A.1

(A.l

Introducticn to Perturbation Techniques, John Wiley, 1981, p. 88)

to evaluate the integral in Eq. (A.l.l).

Letting

1

9
sz - 2rcos®

£(e) =

and

h(e) = - sz - 2rcosf .

The integral in Eq. (A.l.l) may be written as

2w
L= £()e ™ ¥qo
0 .

We will now expand h(8) and £(8) in Taylor's series.

OOCGOIAOAMNY] $e.0 0 SIOAGAOOAOANNT] § 0 W 4% 1% 070
?‘.0!"1’.,‘0'!'n".'ﬂ?‘.’,‘.l, g'."n'?‘u'."u"‘.’"A'.'.C!‘.’h"‘ﬂ!‘i’)u"‘o"‘l"‘l'!‘l".l"' y "I'."l"‘t"-“n'g.n's‘:’:."e‘i‘!‘c'!‘l"‘l‘t'l'tll’.‘

(A0103) :"| Y

EN
. 1) ﬁ‘qt.‘

2 ) "'l‘i

(A.1.4)

(A.1.5)
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g’l - - rsing so that g\. = 0 .

d9 dy’
sz - 2rcosé 3=0

f: Also,
B
M dzn - = (mz - 2rcosf)rcosd + ':231:129
' 2 2 3/2

de (m“ = 2rcos9)
"
4 and
‘.11
\
. 2, ..

d—z) = - 5 L 7z ° a negative quantity .
t
:- Hence, the function h(8) has an absolute maximum value at 8 = 0 and
()
9l
L it may now be expanded in a Taylor's series about 8 = O:
X‘
i ) )
G h(8) = h(0) +h'(0)8 + 5 h''(0)8" + ...
'
9
N i.e.,
»
b 2
L) &
: h(e) = - mz - 21' -%—'r—e__"‘" seoe . (A.l.G)
5‘ mz - 2: ’
."l
f:, For the function £(9),
o
g L -
i £(9) = so that £(0) = —————
y sz - 2rcos® mz -2r
,:.
)
‘ i
X :_%' -3 rsing 377 80 that g—fe-) =0
(a” = 2rcos$) =0
g
o
[}
‘
‘l
4
.
[ ]
L]
.l
8|
. N
) N
Ii‘. !‘.'l,\'!‘.:“ ».'I‘."A'.‘-'.‘\',‘n'\&\'- .l‘ilo‘ ',‘l‘.‘i'n‘iﬁ‘\.g‘ '|",|'.. \.‘.L .i‘.l‘.‘l.‘ .' N ......" \- ‘ J’\ \ g !. v !.‘ : ‘ ‘..‘i.' !‘ . ,Sm



9
dzf - 3rzsin'9 - rsine(mz - 2rcos9)
2 2 5/2
d8 (m“ - 2rcosd)
d-f\ r
so that &%) = - 5 .
dez (m2 - 2r)3/'

8=0

Hence the function £(8) also has an absolute maximum value at

8 = 0. f£(3) may now be expanded in a Tavlor's series,

2
£(9) = 1 - rd +oeee (A.1.7)

2 3/2
m2 -2 2(m 2r)

Substituting the series expansion for £(8) and h(8) in Eq. (A.l.5),

we have

L=/ [(@®-2)Y? -‘—g-z- (@2 - 22)™2 4 ..

0
2 1/2 rez
"l[(m - Zr) P ——— ooo]
2
e 2 Voo - de . (A.1.8)

In Eq. (A.1.8), the limit = instead of 2r appears because the

absolute maximum value of the function h(8) occurs at 6 = 0 and

hence the maximum contribution to the integral results from the
region in the neighborhood of 6 = 0. Equation (A.1.8) may be

rearranged as
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\/ 2 - »
1= ‘-:/Z_m_zr [ exp(- ar9%/2 Va? - 2r)ds
a“-2c O

-A mz-Z: ®

N

- 5 373 f 8 exp(- arsl/2  al - 2rlde .
2(a” - 2r) 0
:1 (Aolog)
‘ The integrals in Eq. (A.l1.9) may be evaluated (see, for examvole,

Gradshteyn and Ryzhik, Table of Integrals, Series and Products,

o Academic Press, 1979) and the result is

' -A Yo - 2r 1 1 1
1= _.Le [ - - -+ ...1 .
2 ; J
: 2Ar (mz - 2:)1/6 A (mz - 2r)3/"
(A.1.10)

For large values of A, we can neglect all but the first term

) in Eq. (A.1.10) and obtain
\

:- — oA sz -2r ( ,
" 1= . A.l.11
\/ 2 (2 21_)1/“

Substituting for m from Eq. (A.l.2), we have

— o=\ '\/(x - 5)2 -2
L=q/ox 7.17% (A.1.12) i

[(x - £)% + (£ - D
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A.2 Simplification of Integral Eauations

Simplificacion of Eqs. (2.21), (2.22) and (2.23): Consider

Eq. (2.21). The third integral on the right-hand side of Ea. (2.l!

-® b

is

-2x(g - x,)
L £,(3)e 2

d .

x g -x,

2

Recognizing the fact that A is a large number, the strong
negative exponential causes the function fz to be a slowly varying

function and thus fz may be assumed to contribute to the integral

only near £ = xz. Thus,

2 = xy) g -2a(g - x,)

y dg = £,(x,) [ = y dg .
xz E-xz xz E-xz

L £,(8)e

The upper limit £ may be replaced by = and the integral

evaluated to get fz(‘z)'\/%i“ The very same arguments lead to the
simplification of second integral of Eq. (2.22) and fourth integral
of Eq. (2.23).

Similarly, the fourth integral on the right-hand side of
Eq. (2.21) 1is

-21(g - xz)
y f3e
Integral = [ g .

L 7§ - x,
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letting £ - xz = @, we have

-2
b f3e $ha

Integral = | —da .
1-x, 72

Once again because of the strong negative exponential, we may write,

L-x
* 2 e
Integral = £,{2 - x,){/ —dn - | —~— dn] ,
o0 Y2 0 /m

Integral = f3(2 - xz)erfclzx(z - x,) .

We now note that f3 is defined only in the interval £ ¢ £ ( =,

Thus, the fourth integral on the right-hand side of Eq. (2.21) is

zero. The fourth integral on the right-hand side of Egq. (2.22) is

-2A(g - x,)
.e
3
Integral = [ de , x, <0 .
2 'E-xl !
By leeting § ~ x1 = m, we have
- f3e-ka
Integral = | dm .
l-xl /n

Once again, because of the strong negative exponential in the

integrand, we may write,
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A.3 Solution of Ea. (2.22a) ey

Equation (2.22a) is ;3f€
: g b
. T 5.3 I
X I — da + £ (x ) -— =0 , (.\0301) ',’.:c
, e THVE i
. We rewrite Eq. (A.3.1) as

e
RN 0
£,(x)) +x [

PR

1 ds - 0 (A.B.:) ‘:'?i}"i‘

- .

PR

where

o
-
-

5

2 l'n.."
Kk = ;—‘- . (A.3.3) '
V -

s We shall use Picard's method with A

le
fl’o(x) b Cle ’ (AoSoz‘) '1l;,‘

-
f where p and c1 are unknown constants. Then substituting Eq. (A.3.4) ‘hﬂ

in Eq. (A.3.2),

. x .lk'.‘
; 1 oPé e
’ fl l(xl) == kcl f ——ds . (A0305) 0'!.0'
* ? — {xl - E X

- If we now let t = x1 - g, we have

px, © Pt e
£, . (x,) = - ke,e 1 [ F—dt . e
, 1,11 1 T -
; 0o vt 008

: o

T TR o ~> »
ATy ]*.' Nl AR

’ .
e Ve By 0S8y VO Y N T T D) ¥ RO ’ !
A'.‘A’.‘A‘.‘n'.'u‘.‘l'.'\'.'l‘f‘;'“'u’!‘;'..l'.‘l..‘u".'c’.'a’,'c‘,‘u‘.‘u"'u' 'n\,‘l'.'«'f-".r‘:‘o',i:':'.'t.l'f'l‘.‘c‘. W
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i.e.,

, le T (4.3.5) e
fl,l(xl) == Xc,e 1,3 . A.3.5 o
ot

We note that fl,l(xl) is not very different from fl,ﬂ(xl)' Hence et

we choose p such that £ (x,) = £ . (x,). Thus we obtain A
1,0M1 L, 1M1

L] "'
? e (1 ¢ x \/E" -0 e
B - J . (S N
' ? 'o"::“

Taking the negative square root® so p is real, we get

1=k f2=0 3

LR AN

or

-
~
-~
-
-
-
-
)
-

p = Trk- . (An3c7) “l.“‘i‘

Thus

( fl(xl) =c.e 1 y X, €0 . (A.3.8) ‘“ﬂé

*This is required for the function f£i(x;) to satisfy the integral o
equation.

M PP TEEEENE F PP e Tt TIvw 3§
[ SR X ok T
PALhY |
AP 1 ~“‘.~ ““Q‘l"‘.:
L o T e e
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A.4 Solution of Sa. (2.21a)
Equation (2.21a) is
X
g 0 £ 2 g, T
- ‘xz - a 0 /xz - E
Substituting the value of fl from Eq. (2.24), we have
- X
(:o 0 clezk 2 f2 -
-./xz-a ov’xz-i V

Consistent with our approximations in the first integral appearing
on the right hand side of Egq. (A.4.2), we shall assume that the

strong negative exponential will cause S — to vary slowly so
VX9 = &
that it can be assumed to contribute to the result only near £ = 0.

Thus,

g

x
c
1 1 2 /Tr
x, 0 /xz-s

Taking the Laplace transform and simplifying, we have

c c

0 1 1 1

2
F B em—— — -
2 A V"«;(«;w;n /7% (/3 + /7%)

’ (A.4.3)

where Fz is the Laplace transform of f

Laplace transform, we find for f

9° Taking the inverse

2’
c 2)xx c 2xx
fz[xz) - 29- 1 /12’—& e zerfclzxxz - -1: [1: -/ e 2erfc/2kx2[
72) |/1r:0:2

(A.4.4)
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APPENDIX B

EXPERIMENTAL RESULTS AND ANALYSIS
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B.2 Measurement of Free Air Content in the Test Section

The change in acoustic velocity as a function of free gas
concentration is given as [see for example, John M. Xillen and
John F. Ripken, "A Water Tunnel Air Countent Meter,” St. Anthony

Falls Hydraulic Laboratory Report No. 70]

cx Pa
. " \/<E +(1-=xpr (3.2.1)
v w a

where

A

velocity of sound in the mixture

$

velocity of sound in water

"
]

concentration of free gas by volume

ts
g
]

bulk modulus of pure water

P, = absolute pressure in the test section.

In order that Eq. (B.2.l1) applies, it must be established that the
gas bubble sizes present in the test section are smaller than the
resonant size corresponding to the frequency of the measuring

acoustic signal. From Eq. (B.2.l) we can obtain an expression for

the concentration of gas,

X =157 . A (B.2.2)
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Example: For a measured time delay of 140 microseconds at a tunnel
tast section pressurs of 4 psia, the concentration of gas is

determined as follows:

The time delay Ty may be expressed as

1.443/12 6/12
Td - ~<500  * Cx (8.2.3)

where the first term represents the time delay through the lucites
walls and the second term represents the time delay through gas
water mixture.

Hence, for T4 = 140 microseconds, Cy is calculated from

Eq. (B.2.3) to be

Cx = 4312 ft/sec .

The bulk modulus for pure water is 32 x 104 psi. Hence from

qu (30202),

2

5000
s (G -1
X =

(32 = 10° - 4)

6

= 4,3 x 10

i.e., x = 4.3 ppm by volume.
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B.3 Analvsis of ®xperimental ZError

(1) Cavitation Number

The cavitation number ¢ 1Is defined as

P, - P
g==2— , (B.3.1)
1/20 U

where

Po = test section pressure

Pe = steady cavitation pressure

Pew = density of tunnel water

Up = free stream velocity in the test section.
From Eq. (303.1),

1
n o = zn(po - pc) - in 3 - top - 20 ,

so that

Ag 8(e - 7 _ , (B.3.2)
] (po - pc) ]

where the A before a quantity signifies a small error involved in
measuring/estimating that quantity.

The maximum error in calculating (p, - pc) is 0.12 psi. The
minimum value of (po - pc) during the experimen;s is seen to be
2.7 psi. The maximum error in calculating the free stream velocity
13 0.05 ft/sec. The minimum value of U, during the experiments
is 25 ft/sec. With these extreme values, the maximum absolute

error in estimating the cavitation number may be calculated as
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asl _0.12 0.1 _ il
ﬂ 1.7 * 25 0.048 . DN

Hence the ercor in estimating the cavitation number is at the most

g
et
‘ . 8: [ kl'v‘if

(2) Conceatration of Gas e

From Eq. (B.2.2) the concentration of gas is given by Wik

2

P c
a v | \
- = -1 » B.3.2 NXAR
x lg_' - pa)' [(ct) ] ( ) :

1 where RN

g
[+
[

test section pressure

o
'

\"I
bulk modulus of pure water ':1

S!

speed of sound in pure water

Cx = speed of sound in the mixture.

-—wrw—w
-

We want to bound the error in the estimation of concentrationm of '::"
gas when there is a known uncertainity in the measurement of speed
of sound in the mixture. _"";‘

3.‘ §
b From qu (BOZ-Z), N

ACx
2 (E_) AP :‘\i";;"
;‘-x— = L3 + a (B . 3 . 3) I"‘i“‘l
x 2 P ’ o
Cx a :’O:Q.l
- ) |
v 3

noting that E; >> P,. ' \l‘.':'i
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The maximum error in measuring the speed of sound in the
mixture is 30 ft/sec. The minimum speed of sound in the mixture
during the experiments is seen to Be about 4000 ft/sec. The error
in reading the tunnel pressure is 0.l psi and the minimum tunnel

pressure is 3 psia. Hence from Eq. (B.3.3),

30
axl 2(z005) JRETS R
x 4000 2 3.) *
1 - (350

.

Therefore the bound on the error in estimating the concentration

of gas 1is 8Z.

)
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B.4 Wall Effect Correction for Cavitation MNumber

The technique described by dsu (24) is used in obtaining the
true cavitation number. Following Hsu, the linearized results for a
two-dimensional flat plate hydrofoil with trailing cavity in a

closed tunnel are:

e
g, = (T—_Tf)kw s (B.4.1)
where
L 1/2
Xf = ZQ(Z - 1) » (B.A.z)
and
1/2 /4 -1/4
1 (2L L L
A, 73 (-—,}-) [cosh (%—] + 1] [cosh (I:_) - 1] .

(B.4.3)

In the above equatioms,

a = angle of attack

¢ = chord length of foil

2 = cavity length

L=2+c

H = tunnel diameter.

Having found ¢} from Eq. (B.4.1), the true cavitation number

is found from

(2 +0,)0
g . 11, (B.4.4)

2
2+201+01

D AT AL O OOLIONK
‘-"!-'l?-‘lfn'.‘t’l!.‘l‘.‘.‘..' X ..




Example: The cavitation number calculated from the measured cavity
pressure is 0.75. The cavity length 1 is 7.32 cms. The chord
length of the foil is 7.14 cms. The angle of attack is 10 degrees.

From Eq. (B.4.2),

1/2

il 14.46
Ae = g 10T - U

Af = 00353 .

From Eq. (B.4.3) for %E = 2,981,

A, --% (2 x 2.981) 2[cosn(2.981) + 1]/ *[cosn(2.981) - 1M

A= 2.34
W

From Eq. (B.4.1),

0.353

1 =1 =0.353 2.34 = 1,277 .

From Eq. (B.4.4),

(2 + 1.277)1.277
2 4+ 2 x 1.277 + 1.277%

g =

g = 0.676 .

'!‘.".’.‘:'J! v‘t‘-”‘n‘t‘,‘hok 1



APPENDIX C "

DETAILS OF UNSTEADY DIFFUSION ANALYSIS AN

TR

,---~—
J
5
)
ﬂ:"oo:
":"

=S
o
-
"
.-
P

7.

T’;;&f /

AN
Y

]
o

A
%q-
-~

S
A
LI e e .\'

. 4 o » . Ay mpe- - - N A . - " » - (%) / '
AR TR A LA A R R e i it S Y ey "‘ b4l L0 .. G Y "!,"0.0. W)

&

BAONG ) ;
ot e e "



128

C.l Fundamental Solution of Fa. (4.13b)

Fundamental solution to Equation (4.13b) for an oscillating unit source
at the origin:

Equation (4.13b) is

i, aEu 3 Eu azEu
3t + U. = "t( 5 + 5 ) . (C.1l.1)
ax ay

We assume that the cavity length fluctuations are harmonic. Then, the
entire concentration field E; is harmonic so that
- jwt
cu(x,y,t) =c (x,y)ejw , (C.1.2)
where w is the circular frequency of harmonic oscillations and j = -1 . It
is to be noted that only the real part of the anmalysis that follows is

physically pertinent. Substituting Equation (C.1.2) in (C.l.1), we obtain

Bzc 2

. ac 3 C
jwe + T _ = vt(-—z- +——2) . (C.1.3)
ax y

We normalize the x and y coordinates by the flat plate chord b and simplify

Eq. (C.1.3) as

2 2
% A o+ 3 =) (C.1.4)
x' y!

3
2jkc+za—§,-

where x' =X (C.1.5)




k -~%— = reduced frequency,
«®

U b
R = —%;: = Diffusive Revnolds' number (c.1.3) Wy

To solve Equation (C.l.4) we replace the Laplacian on the right-hand side by

its counterpart in plane polar coordinates when variations only in the radial

Then,

direction are permitted.

2
2
3c 37¢ 1 3¢
g 2jkcR + 2R ‘3? - - T o’ (C.1.9) o
. ar il

where

X =1 cos @

y =1 sin 8
(C.1.10)

- -1z
@ = tan (x)

It must be noted that the coordinates x and r appearing in Eq. (C.l1.9) are

dimensionless.

By letting

(C.1.11)

',
) -, X i . ] TR - P A Pt
ottt |:'.I}"|."nf"t.,"s. N O IIREA LS, LA M |,"l..:l\‘ M -"" Pna{a¥




(C.1:12)

We now use separation of variables to solve Equation (C.l.12).

substituting

C(s,r) = S(s)X(z) , (C.1.13)

Equation (C.1.12) mav be written as

? | B 1 ]
2ij+§—-§—+%' -zf , (C.1.14)

2
where 3 is an unknown constant. Therefore,

(C.1.15)

(C.1.16)

Equation (C.l1.l5) may be rewritten as

2 dZX d

r _f+rd_- (C.1.17)
dr

and the solution for :i > 01is

X(r) = A1 Io (xlr) + Az Ko (xlr) . (C.1.18)
where Aj and Aj are constants and K, and I, are the modified Bessel's function
of zeroth order of first and second kind respectively.

Note: Negative values of xi yield functions

Y
= - 0 "' N ( C o, w ’l'(. LA P R l‘.'( EaL L SN L -‘\’1 \-‘ LN r\' Nnl'_.-' ,'q‘\v_ o« o W W r.\f‘rxl \q‘ “~q o s,
1t Tt G N o S T S B R N 5 T i I N TN N N N S ¢ O a e e A



Jo and Y, (Bessel's function of zeroth order of first and second kind

respectively) which do not satisfy the boundary conditions.

Note 2: :i = 0 ylelds a logarithmic function which again does not satisfy

the boundary conditions.

For large distances from the origin, the function c(s,r) should vanish.

Hence, we set A; = 0 in Equation (C.1.18). Therefore,

X(r) = Ade(clr). (C.1.19)

The solution of.Equation (C.1.16) 1is easily written as

(xi - 2jkR)s

S(s) = Be , (C.1.20)

where B is an unknown constant. Hence, from Equation (C.l.1l3),

(.% - 2ikR)s

C(s,r) = B, e Ko(xlr) . (C.1l.21)

1

where By = BAs is a new unknown constant. The arbitrary constant By and the
separation constant kj are obtained by requiring that Eq. (C.l.21) go to the

proper steady state limit (8) when the reduced frequency k goes to zero. This

results in

= 1 (C01022)

and Kl = R - (C01023)

Hence, for a unit oscillating source,

c(x,r) = TTov “jkx Rx R, (Rr) (C.1.24)
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Inverse Laplace Transform

-

,.
s

7

To obtain the inverse Laplace Trunsform of the function

F(s,t) = ' 0 /s + ik
s| YR - jk + /s + jk|

(C.2.1)

b = IZR - jk . (CO2.3)

F(s,t) = —2 /s +a , (C.2.4)
s[/s -v-a+b]

[VS*‘B*‘b b

F(s,t) = Q

s(/s +a +b] s[/fs +a+b]

F(s,t') = Qf - 5 ] (C-2.6)

s[fs +a + b]

H(s) = b (C.2.7)
s[/s +a +b]

bl/s +a - b]

H(s) = 3
s[s +a -b“]

(C.2.8)

o - ) - e
ﬁa.ﬁ.&”qﬁ;' (0000




Then,

—— 9
b Vs +a LD (C.2.9)

H(s) = —_ - —_ .
s(s +a) s(s + a)

Denote
2(s) » 22 ¥ 2 (C.2.10)
s(s + a)
- 1
Z(s) ____ s +a+b"
b s(s +a) /s +a
i.‘::
Z(s) ___ 1 b A
—— -— ————— 3
b s /s + a s(s + a) /s + a Ly
K X
!'|‘|“|'
2 '1’5'1‘
Z<S) = 1 + E— 1 - 1 } . (C.Z.ll) “l::.‘.
b — "= — p—— iyt
svVYs+a a svs+a (s +a)is +a AN
Rty
|.':‘c‘
Substituting Equation (C.2.11) in (C.2.9), one has e
s s 2 R
o,
H(s) = —2—— + —2 S B - . (c.212) oo
s/s+a asvVs+a a (3+a)vs+a s(s+a) ")
Substituting Equation (C.2.12) in Equation (C.2.6), one gets :t
"
3 3 2 >
1 b b b b a0y
F(s,t) = Q[; - - + + 1 . K

sv/s +a as Vs +a a(s +a)vs +a s(s +a)
(C02013) &)

Taking the inverse Laplace Transform on both the sides, one finds

2 - -
f(x,t) = QE—_ - 2—- e erfch fx - 2 /a erf /E] . (C.2.14) .::.'f
a a .

N o'.\':'
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C.3 Integral Evaluation

Equation (4.25) is

L(t)

L. [ o0, (C.3.1) o

t o *Qa

':‘:'n‘

l:.:l‘

where .o'.::::

- - —_ "X

£(x,%) =-% (a - ble Sarich /X -b /3 ers Yax) . (C.2.2) ‘:

. 2

. Gl

Substituting Equation (C.3.2) in (C.3.1), oy

2(t) , M8 2(t) o

gl:- --g- [ [ adx -b" | e erfeh /xdx -b Ja [ eri Jax dx] . 3 '

0 0 0 ::g:

':5’»'

(C-3-3) s

g

Let A
N

Vo

2(t) (C.308) o

I, = [ e erfcb vx dx ,

o
2R

¥ o

and

F

2(t)

1. = £ /—- d . (C.3.5) il ™,
5 {) erf Yax dx \‘;
N

The integral in Equation (C.3.4) may be evaluated by parts.

~ox g(t)  (E) »2x
] +d ey 2t _ux
* 0 /m  /x

L S
r %
s

I, = erfchb vx
1 -a

Adidtos:
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-
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R
- 2(t) i
1 e *orich 2 b e 2% . $§$¥
Il = ; - - - - f - dx . (Co300) ".:'.‘:
a 77 0 Vx 1:'.':!i
KRS
By setting ax = a2 in Equation (C.3.6), we can show that f‘h?
A
1 et rich V1 b —_ '?';.';"
1 | - - 2T - erf vla!. . (C.3.7) 9:4!:
L @ a vVa it
liv‘ G
The integral in Equation (C.3.5) can be obtained by parts, .‘{s
.“\g
) _a(t) &) — -ax oy
I, = xerf Yax | - [ x ——/é 2 — dx Wt
0 Y Yx .
ooy
.|
i.e., f?“&
ﬂ\¢
s 2(t) R
Iz = lerf /a—ﬁ - — é’ J’ /; e-axdx . (c'3o8) 6' 1.9,
/‘; 0 ' “ f
. .'

S

)
-,

S

The integral in Equation (C.3.8) may be evaluated again by parts and the

result is

— L -al 1 —
I2 fexf Jaz + = e -0 erf vat . (C.3.9)
Hence from Equation (C.3.3),
2 2 3
3—M Q [ag - L e *erfch VL + b erf v/ ag
t a a a « /a3

+—2L  erf Jag-b et _p /a2 gerf Yat ]l . (C.3.10)

ERE

27 a
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L The quasi steady mass flow rate across a two-dimensional cavity
N is, from Equation (4.23)
)
y ZRz c ‘RZ [;: 1

]
]
]

= ey /.2
' MQS &AT R <, ZR) (4.28)

Hl

For large values of the argument 2RZ,

Y
3 232 = 1 1 1
P e eric 2Rz = — ( - gt eee ) . (p.1)
b /?-F - 3/..
. . 2Re 2(2R2)
' Substituting Eq. (D.1l) in Eq. (4.28) above,

. AAT c \/"? i

- 0 mgy YT 1 __1

MQS ——_ (V2r2 , * - — 3/2 + eee) o (D.2)
, y 2V2R2  4(2R2)
Yy
' Retaining only the first term within the brackets in Eq. (D.2), we
3 take the logarithm on both sides and then differentiate to obtain
'
; .
’ M Ac -
'
} QS - - o, A% . (D.3)
i ﬁ o 220

Qs
and this is the basis of the order of magnitude discussion surrounding

Y
? Eq. (4.31) of Chapter 4.
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APPENDIX E

UNSTEADY ENTRAINMENT DATA AND CALCULATIONS
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E.l Quasisteadvy Concentration Fluctuation Amplitude

l

-

AT M BN )
St u",!’

".s"f! ¥ “J X

NORMALIZED STEADY CAVITY LENGTH EO->
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5.0 © EXPERIMENT
— EQUATION 5.1
4.0
30F
2.0
1.0+
0 ! 1 ) 1 1
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E.2 Quasi-Steaadv Concentration Fluctuation Amplitude
Equation (5.2) is
pGo g
T = - 000976 a"'- + 0071‘ . (5.2)
v )

Taking logarithms on both sides and then differentiating Eq. (5.2),
one obtaias
ApG° = 0.0976(a/ao)(AaO/ao) P, . (2.2.1)

From Eq. (2.9), the concentration difference c¢ expressed in ppm by

modes 1is
PGO
c, =8 - e s (2.9)
so that
A bp, /8
o _ _ o .
c c
o o

Substituting from Equation (E.2.1),

be -0.0976 (o/ao)(Auolao)(Pv/B)
c a = (pv/B)(0.7a - o.o§7€’a/a°)

. (E.2.2)
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E.3 Evaluation of 3m/3t in Eg. (5.16b)

let V = total volume of cavity in cubic feet,
m = total mass of gas in the cavity, in slugs.
Then, at any instant, the equation of state for the gas within the

cavity is

pgY = mRT ’ (E.3.1)

Wherza R 1is the specific gas constant and R = 1718 ft.lb./slug °R

for air.

Assuming that the temperature of gas within the cavity remains

constant, Eq. (E.3.1) may be partially differentiated with respect to

time to obtain

ap
om 1 G v
(W +Pg 3;)

-a?a R_T at 'Y (E.3-2)

From Eq. (5.13a2), the cavity volume V is

—.2 -
Vv = _“gb (2 ~ %) . (5.13a)
where a = ao(l + Aaejut)

j(NC+¢))

and ¢ = zo(l + ge

Differentiating Eq. (5.13a) partially with respect to t and
neglecting terms of order ¢Aa, one obtains after suppressing the
ejmc factor

a igk'q j .-
vV o < . al® -1
3t 3 [lcu e”V + (zo 2) Aa] . (E.3.3)

£ [ 3% ]
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Now, from Eq. (4.17), the cavity gas pressure pg(t) is

j(wt+¢a)
PG(t) = pco(l + 8e )

Differentiating Eq. (4.17) partially with respect to t and

suppressing eJWt facror,

1 4
P k qcsj
o]
= e

b

P, i¢

at

a

Substituting Eqs. (E.3.3) and (E.3.4) in Eq. (E.3.2), one obtains

- ' s

wuob Pe k 9.3 . e
o . 2 [(L - 2)(se
at 2RT o 2

a + AQ) + ;oaej¢] . (30305)
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E.4 Unsteadv Entrainment Calculated Data

The sample calculations below show how the tabulated results were
obcained for one case at a 10 Az frequency and 2° peak to peak foil
amplidtude.

From Eq. (5.3),

bov ¢ - -
M, w—E [\/m + VY=o 1. (5.3)

do ' % lo
i Y
For R =5y " 25¢0 , ¢ =10 ppm, o/a_ = 2.7,
v, o

g, =232, ¢, =132, W =l.46x 107> slugs/sec ft
o] [e] o}

From Eq. (E.2.2),

Ac

—2 = -0.0025
c
o
e o 0:165% 0.707 _ _ o (..
2 lu lz 27 2,32 x 1.32
o o
The last term in Eq. (5.21) is
vy '
wabb pcok ch ) . j¢a N 10
- [(2, =5 )8a+ée ") +2 e ] .
2RT Ma o o
)

From Eq. (5.5) ¢ = k' = 0.03 radians = 1.72°. From Equation (5.2)

and (30201), § = 0.05.




e "y

.

- -k
N

[ R

Ry ———

From Eq. (5.15),
Aa
v = (ee” + Ao - —>)/(1 -

u u
o o

)

v = 0,239 + 0.006j = 0.239 @ 1.44°
02 = 180° + 1.44 = 181.44°

From Fig. (3.14), for cr/u.o = 2.7, P = 72 1lb/sq.ft.
o

Substituting the values, the last term in Eq. (5.21) is

-0.002 + 00065j, as tabulated.
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